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INTRODUCTION
The present paper is devoted to the theory of characters of linear
representations of finite groups on an arbitrary field.

The author's results, published in [8] and [9], are generalized in 1.
The conceot of the ¢ -character of a finite group is introduced in this same
section.

An S -mapping of a finite grow G is such a one-to-one mapping of a
9 group into itself as defines the substitution in the set of continuously
irreducible characters of this group. The class of S -m:ppings of a finite
group G is exhausted by those one-to-one mappings of a group into itself as
transform the classes of conjugate elements into each other and, hence, induce
an automorphism of the algebras of these classes.

The § character of a group G , where § is a group of S -mappings
of this group, is defined as the sum of different characters obtained from the
absolutely irreducible character A by the effect of all transformations from
the group $ on it.

Relations which generalize the classical dependences between absolutely
irreducible characters of a finite group are proved for e} characters. Here,
4 divisions of a group, sets of elements of the form clo(a)c where a € G
is a fixed element, ¢ runs through the group G and ® 1is a group of S
manppings of %, play the part of classes of conjugate elements.

Relations between the characters of a group G on an arbitrary field
Kty whose characteristic does not divide the order of the group,are obtained
from general relations between <§ characters if % is taken to be a group of
3 -mappings of the form a-»a" (a €0) , where p runs through the integers
corresponding to the automorphisms & -»e" of a field X'(e) on K' (¢ is
a primitive n-th root of 1, n is the least common multiple of the orders
of the elements of the group G ). In this case we call the ¢ divisions of
the group G , the K' -divisions of the group.

If G 1s a normal divisor of the group F and 4} is a group of S

mappings of the group G generated by a group of inner automorphisms of the
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group F , then the & characters of G agree with the relative characters
of the group G with respect to F , introduced by Frobenius [3].

Also considered in §1 are applications of the results on § characters
to the question of the isomorphism of centers of group algebras.

82 is devoted to induced representations. Two known theorems of R.
Brauer on induced representations on an algebraically closed field of char-
acteristic zero are generalized to representations on an arbitrary field K!
of zero characteristic.

Let us call the K' -characters of a group G the characters of linear
representations of a group G on a field K' . We shall call integer linear
combinations of characters of irreducible representations of a group G on a
field K' (drreducible K' -characters) generalized K' -characters.

Let us agree to call a subgroup E< G satisfying the following condi-
tions a K' -elementary subgroup of the group G :

1) E is a semi-direct product of a cyclic normal divisor H = (a) of
order h by the p -group F(p,h) =1.

2) For any element g ¢ F, we will have g"lag = a%

, where p is an
integer such that the mapping e —>e! defines the automorphism of a field
K'(e) on K' (e is a primitive m-th root of 1 , m is the order of the
group G ).

The following equivalent statements are proved:

I. Each irreducible K' -character of a group G 1is represented as an
integer linear combination of K' -characters induced by irreducible K' -char-
acters of K! -elementary subgroups of the grouwp G . '

II. The function f(g) (g € G) , prescribed on the group G , with
values in the field K''D K'!' 1is a generalized K' -character of this group
if and only if f£(g) is a function of the K' -divisor of the group G and
the function f£(g) ~induces a generalized K' -character of this subgroup on
each elementary subgroup of the grouwp G .

The method of [7] is used to prove statements I and IT .

Furthermore, a theorem reciprocal to THEOREM II (a result of [13] is
generalized) is established as is a theorem on the unsolvability of an integral
ring of characters of a finite group in a direct sum of ideals. Relations are
also studied between the é -characters of a group and a subgroup, which are
analogous to the known Frobenius relations.
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A brief explanation of the fundamental results of 82 was published in

(20].

The following notation will be used in the sequel:

7~

(4) <

Let G be a finite group, K'

G -
h -

n -

finite group

the order of G

the least common multiple of the orders of the elements of the
grown G

classes of conjugate elements of the group G

(1 =1,...,s)

an arbitrary field whose characteristic does not divide h

order of the class Ci

algebraic closure of KXY

field of complex numbers

field of rational numbers

prime ideal of a field R(e) , dividing the prime p
n~-th root of 1

group algebra of the group G on the field K!

primitive

all irreducible representations of the group G on K
all irreducible representations of the group G on ﬁ
all irreducible representations of the group G on K
character of the representations I;' (i =1,...,r)
character of the representations f} (3 =1,...,8)
character of the representations Ig (3 =1,...,8)
degree of the representation I} (i =1,...,s)

center of the algebra R(G,K!)

sum of elements of the class C, in R(G,K")

i
complete system of minimum idempotents of the center of R(G,ﬁ)

§1. §'—CHARACTERS AND CHARACTERS OF REPRESENTATIONS ON AN

ARBITRARY FIELD
an arbitrary field.

It is assumed throughout this paper that the characteristic of the

field K¢

does not divide the order of G .

The group algebra R(G,K') decomposes into the direct sum of minimum,
mitually-cancelling two-sided ideals:

(1.1)

The expansion of the center Zgy

R(G,K') = I} + ... + 1! (Ij-I1 =0, if 1 #£})

of the algebra R(G,K') into the
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following direct sum of fields corresponds to such an expansion:
(2.1) Zy = L4 4 ...+ 2
(Z{ is the center of the ideal Ii H Zi-Zg =0 if i £ 3).

Each field Z; (i =1,...,r) is isomorphically a subfield of the
field K'(e) .

Because of (1.1), for unit R(G,K') there holds an expansion into a sum
fo pairwise orthogonal minimum idempotents of the center:
(1+.1) l=el+...+0e! (e]€Z; ejrel =0 for if3)

A two-sided ideal I{ (i = 1,...,r) decomposes into the direct sum of
minimm left ideals:

(3.1) =T +... +Iisi (1 =1,...,r)

In conformance with (3.1), the minimum idempotent of the center ei
(i =1,...,r) is represented as the sum of minimum idempotents of R(G,K') :

(3'.1) ef = €iq * v * eiSi (i=1,...,r; 6136‘1133 eij'eik =0
for j#k)

Bach minimum two-sided ideal I{ is isomorphic to the complete matrix
ring on the body Di , a finite extension of the field KXK' . The field Zi is
the center of the body D, (i =1,...,r)

According to general theorems of algebra El], the dimension of the body
Di on its center Z{ is mi , where m is an integer called the index of
the body D, (i=1,...,r) .

The number of nonequivalent irreducible representations of the group G

on a field XK' is r . To each two-sided ideal IJ (i=1,...,r) there cor-
responds an irreducible representation I}' , on K' , of the group G which

is defined by any minimum left ideal

Ic  (1=1,...,r)

An arbitrary left ideal I< R(G,K') can be considered as an additive
group with a ring of left overators of R(G,K') . I is a minimum if and only
if the ring of operator endomorphisms of an additive grounr I is a body.

A1l minimum left ideals IS I} (i =1,...,r) are operator isomorphic.

The body Di (i =1,...,r) is inversely isomorphic to a body of operator endo-
morphisms of any of these ideals.

The irreducible representation I;g , on K!' , of the group G decomp-
oses on the fielg K into a sum of absolutely irreducible representations:
A

(4e.1) Tr=m(Ii + ...+ I_;[qi)
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where each absolutely irreducible representation Iij (j = 1,...,qi) enters
into the expansion I';{' with the same multiplicity m, , the index of the

body D, (i-= 1,...,r) [b]. The number m,
of the representations f?j (j = 1,...,qi) relative to the field K' .

The Schur index my is a divisor of the powers of the absolutely

irreducible representations Iij (3 =1,. eesdy4 3 i=1,...,r)

is called the Schur index of any

As R. Brauer showed [16], each representation of a group G on a field
f( is equivalent to a representation in the field TI( e) , where II is s
simple subfield of the field K .

Absolutely irreducible representations of the group G on a field of
characteristics p > O can be obtained from irreducible representations on
the field R(e) .

If p is a prime ideal of a field R(e) dividing p and T is a ring

of P -:T.ntegers’vr of the field R(e) , then each irreducible representation

I';_ (i =1,...,s) in the field R(e) is equivalent to the matrix represent-
ation g -] lajll( (g)|| (g& @) , where agi) € T. If the elements agi) €T
are replaced by the corresponding classes of residues mod p, then all the
absolutely irreducible representations of the group G on a field of character-
istics p can be obtained from the representations q,...,fé .
Hence, a one-to-one correspondence is established between the characters
)(1,.. .,XS of the irreducible representations of G on the field of complex
numbers [these renresentations are realized in the field R(e) ] and the char-
acters %1 ,7( of the absolutely irreducible representations of G on a
field of characterlstlcs p 8ince the character Xi(g) is obtained from the
character 7( (g) (i =1,...,5) by reduction mod P.
. The characters Xl(g) ,7( (g) of the irreducible representations
I"L,...,l" of the group G on the field X satisfy the following basic

s
relations:

A »~ (m)
(I) Xl(g)')(J(g) = 'r 7( (g)
(r :(Lgl) are non-negative integers)

s

(11) 1% ()R (ey) = m E X(M)hng(t(g )
(gl,...,gs is a system of representatives of classes Cl,...,Cs 3 (?)

are non-negative integers).

# The ring T consists of all elements <« (b #0), where a and b
are integer elements of the field R(e¢) and b £°0 (mod ?s
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S A TR 0 if a and b belong to different
(II1) z Xm(a)xm(b ) = classes C; ana Uj

m=1 - if a,b€g
i
s A - 0 for i#3j
(V) m§1 hm%i(gm)xj(gm ) = h if i =j (gm Cm 5m=1,...,8)

The equality (IV) can also be written as follows

. - 0 if 1 # 3
From (III) for b =1 , we obtain
~o S A 0 if a f 1
(111) Z nm%m(a) =l n if a=1
m=1
If Xj(g) =1, then (IV') becomes
0 ir %.(g) ¥1
(V) 2 X(g) = .
pEG h  if X (g) =1

A

The center Z% of the group algebra R(G,ﬁ) is an algebra on K,
which decomposes into the sum of s pairwise orthogonal fields isomorphic to
the field K . The elements kq,...,k; and the idempotents ¢
the notation (Af] form two bases of the algebra Zﬁ on K.

The following formulas hold:

A
19+ 028 [see

5 i (g;) ,‘ n. s a _
(b.l? k; = hy mi:l mnmi CI & = z % (ehk
(g, € C; 5 i=1,...,8)

DEFINITION 1.1. The one-to-one mapping ¢ of the group G onto
itself will be called an S -mapping of the group if for any character Xi(g)
(i =1,...,8) the function Xi(¢(g)) is also an absolutely irreducible
character.

Tt evidently follows from the equality Xi(‘P(g)) - ;(j(lr»( g)) (g €a)
that Xi(g) = Xj(g) for all g & G . Therefore, the S -mapping ¢ defines
a substitution in the set of irreducible character of the group G on the
complex number field.

It is clear that if @, ¥ are S -mappings of the group G then o-1
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and ®¥ are also S -mappings. X .

REMARK 1.1. As has been noted, the characters 7(1,...,)(8 of the irreduc-
ible representations of the group G on an arbitrary algebraic closed field k
whose characteristic does not divide the order of the group, are obtained from
complex characters X;,...,X by a reduction mod .

Therefore, the S -mapping ¢ defines a one-to-one mapping of the set
%»... R into itself for any field R .

DEFINITION 2.1. Let ® be an S -mapping of the group G . The linear
transformation ® of the linear space of the group algebra R(G,K'), defined
by the formula

i=l1 i=1

(gl,...,gh are elements of G) will be called an S -mapping of the algebra
R(G,K') induced by the mapping % of the group G .

" In the sequel, we shall not distinguish between the S -mapping of the
algebra R(G,K!') and that S -mapping of the group which induces this mapping.

Examples of S -mappings of a group:

1. Arbitrary automorphism ¢ of a group. Actually, if )(i(g) is the
character of an irreducible representation g-sA(g) of the group G , then

h h
e = aigi> = 3 ai¢(gi) (aié K')

)(i(‘P(g)) is the character of an irreducible representation g —>A(9(g)) of
this group.

2. The transformation ®(g) =g" (g € G) , where (u,h) =1 . The
transformation ¥ can be put into correspondence with the automorphism § of
the Galois group of the field R(e) on R : 71’(6) = ¢® . Hence, the following
formula is correct:

(5.1) BX ()] = X;(g™)

q .
Actually, if )(i(g) = ¢ 1, ... + €T (the values of each character are

the sums of the roots of unity), then

kg
'5[7(i(g)] me T4t
m P'ql uqr
On the other hand (g™) = ¢ + ... +¢ since the eigennumbers of the
’ i

matrix A" are |y -powers of the eigennumbers of the matrix A .
Because of (5.1), 7(1(‘P(g)) is the character of that representation of
the group G which is obtained from the representation I} corresponding to

i
the character 7(i (i =1,...,8) as aresult of the automorphism ® of the

Hq,
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field of representations R(e) .

LEMMA 1.1. Each 3 -mapping ® of the group G transforms the classes
of conjugate elements of a group into sach other.

PROOF. Let a&€ G . If ®(a) and ®(glag) belong to different
classes C; for a certain element g € G , then because of (III)

3 -1 -1
Q= i217(1[(‘l>(a)) 1% (®(g™"ag)) = O

But fi(¢(g-lag)) = Xi(¢(a)) since the characters X1(¢(g)) are functions of
the class of conjugate elements. Therefore, on the basis of the same relation
(111):

s -1 h
SRR A GO RUCHES

where hj is the order of the class 01;2 9(a) . Contradictions are obtained.
LEMMA 1'.1. If 9 is a S -mapping of the group G , then *(1) =1 .

PROOF. Iet % (®(g)) = X, (g) (1 =1,...,8) . Then X, (®(1)) =n,

i i

(nr is the power of the representation corresponding to the character-'X} ).
i i
If ®(1) g1, then because of (III)

8 8
Z nn, = I AAIK(PL)) =0
ta] 1T g PH
which is impossible. '

COROLLARY. For any S -mapping @ the powers of the absolutely irreduc-
ible representations corresponding to the characters Xi(g) and

X1(¢(g)) = Xri(g) (g € G) coincide.

Actually, n, = %,(1) = X, (®(1)) = X, (1) =n,

Ty
LEMMA 2.1. The S -mapping 9 of the algebra R(G,R) transforms the
minimum idempotents of the center

[~

(4rr.1) &, == 2 X(g)
- 4 R £€ G Xi g/8
into each other.
Actually
n
(6.2) °3,) -y 2 WHOLCES - xi(cv Ye))e
g€ g

Since X1(¢ 1(g)) is a character of the group G to which the absolutely
irreducible representation of power ny corresponds, by virtue of the corollary
to LEMMA 1'.1, then we obtain, from a comparison of (4''.1) and (6.1), that
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9(8,) 1is the minimm idempotent of the cemter R(G,K) .

THEOREM 1'.1. The one-to-one mapping @ of the group G into itself
is an S -mapping of a group if and only if ¢ dinduces an automorphism of the
center Z of the algebra R(G,K) for which the elements k; (i =1,...,s)
transform into one another,

e, ...e
PROOF. The substitution of idempotents el ;) corresponds to

r LN r
1 ]
each automorphism V¥ of the algebra Z on K and, conversely, any of the
s! substitutions of the elements 8154058 determines an automorphism of
the algebra Z on K (Z = Key

automorphism of the center, then

+ ...+ Kes) . Therefore, if ¢ induces an

Ny -1 iry
(6'.1) ®e;) =5 2 ¥ (v (@)g = Z X, (g)g
g€G —- g€G i
Comparing coefficients for 1 in the right and left sides of (6'.1l), we obtain:
n, = .
e

from which
1,07 Hg)) = X (2 (8€G; 1i=1,...,5)
Therefore ¢ is an S -mapping of the group G .
The necessity of the conditions of the theorem results from LEMMA 2.1 .
COROLLARY. If ¢ 4is an S -mapping of the group G and a € G , then
(7.1) o(a7l) = g [#(a)] 7 e (g € G)
PROOF: Let @(k,) =kri (1 =1,....8) . If

8
' m
_ m=1
then because of THEOREM (1'.1)
s
(8.1) K.k = Z A%k
ri rt mel it rm

Let us assume that the elements ls::j are enumerated so that k1 =1 3
a~t C, . Then, from (7'.1), the following equality results
1l
Mg = hy = hy
[see the notation (A)) and (8.1) shows that the class k,  contains the

- t
element [®(a)] 1 (otherwise, the equality x]i-t = 0 mst hold).
Naturally, the question occurs: Do S -mappings of a finite group exist

a Ci;

which determine such a substitution of the set of classes of conjugate elements
of this group as is not induced by soms mapping of the form 9V , where ¢ is
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an automorphism of the group and ¥ is a mapping of form g—-)g”‘ [g € G ;
(p,h) = 1]. The following example yields an affirmative answer to this question.

Let us consider a group G of 36-th order with the defining relations:
2> =1 , b =1, ab = ba, C =1 , clac = vt , o = a7t , d2=1,
gt 1 alpg=ab?, cd=dec. |
The classes of conjugate elements of the group G are:

q ={13,c,=faatpp s - fab,a%b? }
c, = fab?,a%} , Cg = icd,azbcd,abzcd} , G = iacd,bcd,azbzcd}
07 = {azcd,abcd,bzcd} R C8 = c,ac,azc,bc,bzc,abc,azbc,azbzc}
C = f@,ad,a%,bd,b d,abd,a’bd,ab d,azbzd}

Let us show that a transposition of the classes (CB’C9) is an auto-
morphism of the center Z of the algebra R(G,K) . Actually, the product
Cicj , where i, j ¢ 8 , contains only elements of the classes Cq (1 £ q<8)
and for the elements k8 and k9 , corresponding to the classes 08 and C9 s
the following multiplication table holds:

kgky azhiks (1 =1,...,4) ; kgky = 3kg (3 = 5,6,7)
kg = 9(k1 +ky + k3 + kh) ; k8k9 = 9(1;5 +ko + k7)
kogky = hykg (1 =k,...,L) ; kgky = kg (3 =567 ; kg= 9(k1+k2+k3+kh)
(hi is the order of the class Ci)
to which the transposition (08,09) remains unchanged.

ad = a”

Let us assume that there exists an automorphism ¢ of the grouwp G
which induces the automorphism a = (08,09) of the center Z of the algebra
R(G,K) . Then <P(d°1ad) = ‘P(a’l) , from which c"ltP(a)c = [‘P(a)]-l because
?(d) = albdc . The equality c™ixc = x1 1is satisfied only for the elements
ab,'a2b2, a2b and ab% of the group (a)X(b) . This means @®(a) is one of
these elements; the latter is a contradiction that the automorphism % remains
at the place of the class C, = {a,a'l,b,b-l} .

Since any mapping g-»g', (u,36) = 1 , remains at the place of each
class C, (i = 1,...,9) , then we have thereby proved that no mapping of the
form ®¥ exists, where ® 1s an automorphism of the group G , a¥(g) = g
(u,36) =1 (g @) , which induces the S -mapping «a = (08,09) of the
center Z .

5

LEMMA 3.1, Let R be a finite-dimensional, linear space on the field
Py % a group of linear transformations of the space R ; M= {ul,...,um}
and M' = {u]'_,...,ur;lz are such two bases of R on P that, under the effect
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of the transformation ¢ € & , the vectors of each of the sets M and M'
transform into each other. Let the sets M and M' decompose into noninter-

secting subsets of mutually # -equivalent elements:

¥ (1) @)
MziL.-.jl ¥, Mi(\Mj =N\ for 1i#£3, { ..,uri} (i=1,...,q)
Ve Uy : N ) (30 ¢4
M o= 381 Mj , Mi{'\ Mj =N if 143, Mj = {u' seeesut }(j 1,..‘.,r)
Then the vectors v, = u§_l) LR (1), .oy v = u:(LQ) ceo # (a) and
vi = ul'(l) + ... 04 uéil),..., v' = u]'_(r) ce. + u'ir) form two bases of the

subspace RCR consisting of all vectors of the space R keeping each trans-
formation ¢ € # and, therefore, r =q .

If, above all, R is a semisimple commutative algebra on P and the
basis M = iu.l, ’um} is a system of pairwise orthogonal minimum idempotents
of the algebra R , then R is a sub-algebra of R .

PROOF: Let x =20 4+ ... *7‘3‘1;] tooee AR+ oLl Glﬁ (1161’) .
If the vectors u, and u‘_j belong to one subset M, , then there exists a
transformation ¢ € # such that (P(u) =w . Then
Px) =2 y9(up) + o Ry + L On the other hand,

?(x) = x =RqUp + e+ NW 4 .. this means Ry =y .

Hence, the coefficients for the vectors of one set Mi in the

expression for x agree, wherefore we conclude that x 1is represented as a

linear combination* X =YWV +1qvq ('ri€ P;i=1,...,9) . On the

1 1 .00
other hand, A € R (i =1,...,9).. Therefore, the vectors vl,...,vq form
a basis of X . In exactly the same manner, we find that v.i,...,vlf is a

basis of 'fi .

If R is an algebra over P and Yy,...,u, are pairwise orthogonal

vor. =49 for 1 #j
13 v, if i =j

i
This means (¥ quv)(f;11 ...+sv)-'tlpll ...+':Bv ek
(#,,;€ P) , i.e., R is a subalgebra of R
The LEMMA is proved.
Let X = {‘Xl" "’%s% be a set of characters of representations of G
which are irreducible on

- Q ==
b
elements of the group G ; M =i'€

idempotents of R , then

icl,...,cs} a set of classes of conjugate

1""’%53' a set of minimum idempotents of
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A L .

the center of R(G,K) ; # is an arbitrary grouwp of S -mappings of R(G,f() .

In view of LEMMAS 1.1 and 2.1 , Q and M decompose under the effect
of transformations from & of the set X into non-intersecting regions of
transitivity: o :
x.~.x1U...qu; M=MlU...UMq; Q=QqU..Uq
where ‘ !

2 r A Al ‘

(9.1) X ’{Xil’“-’xiri} M, ={eil,...,eir} (1=1,...,9)

5
Q =icj1,...,chj. (3 =1,...,r)

DEFINITION 3.1. The sets Xl,...,Xq will be called # divisions of
the characters of G , the sets l"I:\_,...,I\Iq are ¥ divisions of minimum idem-
potents of the center of R(G,K) . The set-theoretical sum Tj of elements
of the group G belonging to classes from the set Qj (j =1,...,r) will be
called a ¥ division of the group G . The characters of one &% division of
characters and elements of one # division of a group we shall agree to call
& conjugates, A

Evidently the elements a, b € G ]:the characters /)\(i(g) and /]'(j(g) ]
are & conjugates if and only if there exists an S -mapping ® € # such that
b = c'1<p(a)c [correspondingly, 'f(j(g) = "ii((P(g)) ]

On the basis of the corollary of LEMMA 1 , the powers of absolutely
irreducible representations corresponding to the characters i\(il’ . ’ilr of
one ¥ division X; (i =1,...,q) coincide: *
(10.1) Ny = ... =Ny (i=1,...,9

The classes Ci3s+-+»C3q, contained in dne & division Tj (3 =1,...,r)
also have the identical order. Y

Because of (6'.1) and (9.1), the # divisions of characters and idem-
potents define sach other (‘P'l runs through the group # when ¢ runs through

this group): if the character iij € Xi , then the idempotent
P Nn.
A 1 A -]
€,. = 2 Y. (g )g €M
ij T‘l geq 3 i
The minimum idempotents 'él,..,,’és of the center R(G,?{) and the
elements k,...,k . [k; 1s the sum of elements of the class C, in R(G,K) ]
form two bases of the center Zﬁ y satisfying the conditions of LEMMA 3.1. In
conformance with (9,1), let us put
A .
(10'.1) tj = kyp 4ot kg (3 =1,...,r) 3 %, = €41 +o..04 0 (i=1,...,q)

JQj 1 irl



B-162

13

The element t, is the sum of elements of the # division Tj
(5 =1,...,r) in R(G,X) . |

Because of LEMMA 3.1, we obtain the statement:

THEOREM 1.1. The elements t,,...,t ~and the idempotents 'é'l,...,’é'q
of the center Zﬁ of the algebra R(G, ﬁ) form two bases of the subalgebra
Z"C Z% consisting of all elements of the center maintaining each transform-
atlon PE B,

Hence, there results in particular that the number of % divisions of
characters of the group G equals the number of & divisions of the group.

COROLLARY, The following formulas hold:

q A
(11.1) ty = 2 aij'éj A sij 3 (aij, Bij €K;i4i,5=1,...,9;
j=1 o . .
q eiej=0 if i #£3)
(12.1) titj = Zl Xg_gl)tm (1%’0 are non-negative integers)
Mex

Formulas (11.1) are a generalization of the equality (L.1l). The relation
(12.1) expresses the law of composition of % divisions of a group.

Let us note that because of (11.1) the following equality is satisfied
for any element x € 'Z'ﬁ and an arbitrary idempotent 'é':.L (i=1,...,q) :
(11'.1) = 18, (rekj;i=1,. ..,q)

DEFINITION L.1l. We sha'Ll call the idempotents e € ZK , i.e., idem-
potents of a center maintaining the effect of all the transformations from the
group & , the & idempotents of the center of R(G,K) . The idempotents
'51 ,...,"éq will be called the minimum @ idempotents of the center.

We shall agree to call the character of a certain representation G on
K (not absolutely irreducible) which remains in place under the effect of all
transformations ® € #,a & character. The sum of characters of one #
division of characters
(121.1) Xy(®) = Ayp(@) + .o+ Xy (@ (1=1,..,058€0)
will be called an irreducible @ character of G .

The representation G on K whose character is a % character, we
shall call a # representation.

Since ?Z'f( is a semisimgle commtative algebra with a basis ’é’l,...,'é'q
then each & idempotent e € Z’f{ is represented uniquely as the sum of certain
of the minimum # idempotents B, (i=1,...,9) . The minimum # idempotents

o~

Sy ..,'é'q are not'representable as the sum of @ idempotents of the center.
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Because any representation of the group G over % is completely
reducible, taking LEMMA 3 into account we arrive at the following conclusion:

IEMMA l;.1. Each Zacharacter X¥(g) on the field K is represented
as an integer linear combination of irreducible & characters:

(@) = 2 afy(e) (ag > 0)

Evidently there exists a one-to-one correspondence bstween the irreduc-
ible @ -characters on an arbitrary field ?( and the irreducible 2 -characters
on the field of complex numbers K because of the same correspondence between
characters of irreducible representations on these fields. (The tra.ns:lt:!.on’1
from the & -character on the field K to the & -character on the field X
of characteristics p 4is accomplished by reduction mod [see (4)].)

THEOREM 2.1. Each irreducible & -character ﬁii(g) (1 =1,...,9) is
a function of the @& -division of G :

(13.1) R,(a) =¥ (v)
if the elements a, b € G are < -conjugate.

PROOF, Let ?i(a) H’iil(a) + ... +,iir (a) , where ‘iil"""iir are
all the characters of G irreducible over X , €@ -conjugate to i1 ;i
b=%®a) (¢&@&), Then
A A A A A IS
X;(b) = X;7(9(a)) #...4 Xiri(‘P(a)) =Xy (a) +o..+ xiri(a) = X4(a) because

characters from one & -division of characters transform into themselves under

oy

the effect of the S -mapping ¢ .

Relations similar to (I) - (IV) for the characters of absolutely
irreducible representations can be established between the irreducible & -char-
acters 'ﬁ(i of the group G .

_ Let us introduce the notation:
1, - the number of elements (orders) of the & -division T, (1=1,...,9)
|t - the sum of the elements of the & -division T, in r(G,X) (1<1,...,q)
s ..,bq - the system of representations of the & -divisions T,,.. .,Tq

1
ry - the number of absolutely irreducible characters in a I -division

A

(B)

of the characters
A
Xi= éxil’ :ilr; (i =1,...,9)

L n; - the degree of an absolutely irrefucible representation correspond-

ing to any of the characters ?ij (3 =1,...,r55 3 =1,...,q)
[see (10.1)]
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In deriving the relations between the & -characters, we will assume
that the characteristic of the field s does not divide the numbers Zi and
Ty (1 =1,...,9) .

Because of (4.1), (10.1), (10'.1), (12'.1) and (13.1), the second of
formilas (11.1) can be written as: '

\ VA T PR RO | -1
Let us take two irreducible I -characters of the group G :
(1k.1) Xi(8) = Kyqle) #ooot Xy, (g) and xj(g) = ¥gi(e) +..4 xjr

The product X (g) 1 (g) is ev:Ldently a & -character of G since for the
S -transformation <P €3

%4(%() Ly((e)) = ¥y (e)¥,(e)
Therefore, because of LEMMA ), 1 we obtain

(1) ;(i(g);zj'(g) = 3 113() 'Xk(g) ('x(k) are non-negative integers)

(the first relation between the irreducible @& -characters).
By virtue of (14.1)

r r
~ ~ j
2 X (@ (g™ = = ( (@) ( )
geri 8%yt ml to1 g€a Ximngtg

As a consequence of (IV')

5 3‘ ( ),‘ ( _1) 0 it (i,m) #£ (3,t)
geq  im g,_,"jt s h if (i,m) = (§,t)
This means that |

if 143

(Tv'Y) 2 F (e = e
| oo (&g hr, for 1 =3
(the fourth relation between the irreducible & -characters).
Because of (13.1), formula (IV'') can be written as:
q ~ 27~ 0 if i f J
(Tverr) z kai(bkl)xj(bk) - {
k=1 hr j if 1=
Let us put

. (6,07
(15.1) aik = xi(bl-{.l) s skj 'ﬁﬁl (i,j,k - 1,-..,Q)

Then (IV''') shows that between the matrices 1|aij[| and llﬁijll there
exists the dependence:
(16.1) . | |a
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Therefore
q {o if k#1
2 §,,a.. = =
j1 ki ji 1 if k=1
( ) ( 1) 0 if i #k
(II17) 7( b by h_ P =
y= 1 j ‘xj zk if 1=k

(the third relation between irreducible & -characters) .
By virtue of (11''.1l) and (15.1)

q q
h -1
—9,= 2 %i(bm )tm = 3 a,t

n, i m=1 m=l imm
Then because of (16.1) and (15.1) &,( )
3 9 &k n ~ 9 An'®)

(17.1) t, = 28 ( ’é’)« b e = z ®

. k m=1 km m mel her n "m k’"m Zk m=1 mrm m
from which, in view of the orthogonality of the idempotents ’é'l,...,eq , We
obtains
(18.1) -

'%‘J ~
Maltiplying both sides of (12 1) 3 and taking (18.1) into

account, we arrive at the relation:

k

(m)
q \ ~
o Fop Bep) - 3 AR
(mry ) 2 ml KTk
or
(1) Iyl % () 3?k(b;l) = Ty 2 "im) L (o)

(second relation between irreducible # -charac‘bers) .

If the group of S -mappings of # is such that each of the & ~-char-
acters %i(g) coincides with the absolutely irreducible character %i(g)
(i =1,...,8) then each # -division T, of the group G evidently coin-
cides with the class of conjugate elements Ci (i1 =1,...8) and formulas
(I') - (IV?) transform, respectively, into the relations (I) - (IV) between
the absolutely irreducible characters. In this case, formulas (11''.1) and
(17.1) do not differ from (L.1).

IEMMA 5.1. let & be a group of mutually one-to-one mappings of the
finite set M ; &' the normal divisor of & ; Ql,...,QS nonintersecting
subsets of #®' -equivalent elments into which M decomposes under the effect

of a transformation from %' , Then any transformation ¢ € & transforms




17

the subsets Q;,...,Q; 1into each other.

PROOF. If a,b€Q ,
that b = V¥(a) . Since &' is a normal divisor of the group € then
PV = \l’1<P , where \l’l € & . This means %(b) = ®(a) = ‘lfltp(a) , i.e., the
elements ¢(a) and ®(b) are &' -equivalent and belong to a certain subset
Q, . Hence, (P(Qi) c Q;j . In exactly the same manner we obtain kP'l(Qj)g Qi .
Therefore, (P(Qi) = Qj

The LEMMA is proved.

It is possible to consider mutually one-to-one mappings of the group G

then there exists a transformation V € #' such

into itself which play the same part with respect to & -characters ard
@ -divisions as do the S -mappings with respect to the absolutely irreduc-
ible characters and classes of conjugate elements of the group.

DEFINITION 5.1. A mutually one-to-one mapping ¢ of the group G
into itself will be called and S-# -mapping if:

1) 9 determines a mutually one-to-one mapping of the set of
# -divisions of the group G into itself.*

2) For any irreducible & -character %(g) of a grouw G over a
field of complex numbers, the function 7%(¥(g)) is also an irreducible
& -character. |

If ¢ isa S - & - mapping of G , then by virtue of the mutually
one-to-one correspondence between irreducible @ -characters of the grouwp &G
over the fleld of complex numbers X and over an arbitrary closed algebraic
field £ , 2) is also satisfied for & -characters over g .

An example of an S - & -transformation is the S -mapping ¢ € N(¥) ,
where N(&) 4s the normalizer of the subgroup & 4n the group of all
mutually one-to-one mappings of G into itself.

Actually, as a consequence of IEMMA 5.1. such a transformation ¢
determines the substitutions in the sets of & -divisions of G and the
irreducible & -characters of @ , i.e., conditions 1) and 2) are
satisfied.

In particular, the arbitrary S -mapping g—»g" (g & G, (u,h) = 1)
is a S - # - mapping with respect to any group & , consisting of the
transformation g-»g” ({v,h) = 1) since the group of all such mappings is
sbelian (it is isomorphic to the multiplicative group of classes of residues
mod n containing numbers mutually prime to n (see the notation (A) ).

¥ It can be shown, exactly as for Sr-mappihgs (see LEMA 1.1) that
condition 1) results from condition 2) .
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If a group F of S - & -transformations of the growmm G is given,
then the set of & ~characters of G iil"“’:\iq} and the set i‘I‘l,...,LTC}
of & -divisions of G decompose into an identical number of noninter-
secting transitivity domains under the effect of transformations from 7

This is easily proved on the basis of LEMMA 3.1 and formula (11.1) by
the same means as was used to obtain THEOREM 1.1 by means of the same L 7.1
and formula (4.1).

DEFINITION 6.1. Let us agree to say that an irreducible ¢ ~character
"Zi(g) (the & -divisign T, of Ehe group G ) sustains an S - 3 - trans-
formation of @ , if 7(i(<P(g)) = 'xi(g) for all g € G (correspondingly,
*(g) € T, if g €T, ).

THEOREM 3.1. The number of irreducible < -characters of the groun G

maintaining the 3 - I ~transformation ¢ equals the number of I ~-divisions

of the group sustaining this transformation.
. PROOF'.‘ Let Tl""’
‘xl(g),...,xq(g) irreducible & -characters of G ; a the numver of
® -divisions of G sustaining the transformation ® ; B +the number of
% -characters ;(i(g) remaining in place under the effect @ n
Since P 1is independent of the algebraic, closed field K on which
the representations G are taken, then we take the field K of complex
numbers as the field of representations.
Let us compute the sum by two methods:
qQ q h ~ ~og .
D=2 1z 5 'Xk(“’(bj))fk(bj ) (see notation (B) )
k=1 j=1 "k
Because of (IIIY)
- 3 gh"f((w(b )) X, (671) ] = ha
jo1\k=1Tk X370 MK
and as a consequence of (IV'!'') _
~ ,
D = k%l %; 3:%1 ijk(w(bj))'ik(bgl> = hp
This means a =8 . The theorem is proved.
THEOREM 3.1 is a generalization of the Frobenius-Schur theorem [3].
The number of characters of the group G sustaining the transformation
g—>g" equals the number of classes of conjugate elements sustaining this
transformation.

Tq be & -divisions of &G, b€ I (i=1,...,9);
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DEFINITION 7.1. Let F = (®) be a cyclic group of 3 -~ € transform-
ations of the group G . Let us agree to say that an irreducible & -char-
acter %.(g) (a ® -division T, of the grow ©) belonss to the trans-
formation oK , if ok is a generating element of the subgroup F'C F ,
consisting of all transformations Ve F , which the @# -character ii(g)
(correspondingly, the @ -division Tj ) maintains.

LEMMA 6.1. If F = (®) is a cyclic group of S - & transformations
of the group G , then the number of irreducible & -characters of the group
G which belong to the transformation ok equals the number of € -divisions
of the group belonging to this transformation.

PROOF, For k =1 the statement of the theorem is valid since the
irreducible @ -character "‘x’i(g) (gorrespondingly, the # -division Tj of
the group G ) belongs to ¢ if andonly if it maintains this transformation.

Let us assume that the LEMMA is correct for all k { s (1 £€s £ n' ;

n' is the order of F ) and let us prove it for k = s .

The # -characters (& -divisions) maintaining the transformation ¢S
evidently belong to the transformations oK , where 0 k €£s and
s = O(mod k) .

Let s, Syse00s8, be all positive divisors of s ; *Bi (B:!L) the number
of irreducible & -characters (correspondingly & ~-divisions of G ) belonging
to <Psi (i=1,...,m) ;3 ¥ (¥') the number of % -characters %i(g) (corres-
pondingly, # -divisions Tj ) belonging to 9° ; & (5') the number of
irreducible & -characters (correspondingly ® -divisions of G ) maintaining
the transformation ©° ,

The following equalities hold:

5=’I+Bl4-..,+[3m; 5'='('+pl'+,.,+pr;l
by virtue of the assumptions of induction, B, = B! (i =1,...,m) and,
& = 8' because of THEOREM 3.1. This means ¢ = 7' .

The LEMMA is proved.

THEOREM 4.1, The S - & -transformations of a set of irreducible &
characters and & -divisions of G decompose, under the effect of a cyclic
group F , into an identical number of regions of transitivity, where the
appropriate regions of transitivity of these sets contain the same number
of elements.

PROOF. Let M,...,M  (M,...,M!) be subsets of elements mutually
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equivalent, into which the set of irreducible & -characters of G (corres-
pondingly, the set of # -divisions of G ) is decomposed under the effect
of transformations from F .

Let us assume that n' is the order of the group F = (¢) ; Qyenes
is such a system of positive divisors of n' that each irreducible & -char-
acter (# -division of G ) belongs to one of the transformations ‘P(Ii s
(i =1,...,k) .

The # -character ‘x (g) (correspondingly, the & -division T;j of the
group G ) belongs to the transi'ormation ¢ = if and only if the number of
elements in the set M 2 % (correspondingly, :in the set M D Tj ) equals
a, (a is the index in F of the subgroup (‘P ) which maintains xj(Tj)
in nlace) ..

I my irreducible @ -characters belong to the transformation ¢ 1 ,
then just as many & -divisions of G belong to this transformation because
of LEMMA 6.1 .

Therefore, there exists exactly -(-Im}- subsets Mj containing ay
elements and the same conclusion would be valid for the set M:; .

The THEOREM is proved.

THEOREM 4.1 is a strengthening of THEOREM L.l for the case of a cyclic
group F of S5 - & -transformations.

If the group F 1is not cyclic, then THEOREM 4.1 is not true, as can
easily be shown by examples.

Let us conéider the application of the results obtained to the theory
of representations of finite groups on an arbitrary field. Let us use the
notations (A) and (B) . ‘

Let X' be an arbitrary field whose characteristic does not divide the
order h of the finite group G ; ﬁ the algebraic closure of K' ; n
the least common multiple of the orders of the elements of G ; & the
primary root of degree n of 1 ; F the Galois group of the field K'(e)
on K' ., Each automorphism V¥ € F is given by the formula
(19.1) ' V(e) = ¢&¥ (vyn) =1

In conformance with the group F , let us substitute its isomorphic
group & consisting of the S -transformation g-»g” (g€ @) , where v

is an integer such that the transformation &-¢&¥ defines the automorphism
VEF,
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DEFINITION 8.1. Let & be a group of S -mappings of G corresponding
to the Galois group of the field K'(e) on K' (the group F ). Let us
call the @& -divisions of the group G , the characters of G and the
minimum idempotents of the center R(G,ﬁ) , respectively, the K' -divisions
of G, the K' -divisions of the characters of G and the K' -divisions
of the minimum idempotents of the center R(G,ﬁ) .

The characters of one K! -division of the characters, the idem-
potents of one K' -division of the idempotents and the elements of one
K' -division of the group G will be called K' conjugate

The characters of the representations of G on K (traces of the
representation matrix) will be called K' -characters. The characters
‘)(:{(g) (i =1,...,r) of representations ' (i =1,...,r) of the grouw
G which are irreducible on K' will be called irreducible K' -characters.
We shall retain the terminology character for the traces of matrices of
absolutely irreducible representations.

Let X, {xil"' 2 } (1 =1,...,q9) be K' -divisions of characters
of the group G35 Ey = {8495--4584, -S (1 =1,...,9) the corresponding

K' ~divisions of the minimum idempotents of the center R(G, K) 3 Tl’ ..,Tq
the K!' -divisions of G ; Zi the order of T, (i=1,...,9 ; bl""’bq

is a subset of the elements of G such that bi & Ti (i=1,...,q9) . If
A

n A
8, = El z A (g-l)g [see (L.1)] are minimum idempotents of the center
J g€ 9

A
R(G,K) and ¢€ & 4is an S -mapping corresponding to the automorphism
V€ F given by formula (19.1), then because of (6.1) and (5.1)

n
oo =gl 3 LM Me =gl 2 VI De
get gEG

Hence, the effect of the S -mapping ¢ on 33 reduces to the effect
of the automorphism vle F on the coefficient of this idempotent.

Since each idempotent e € Zﬁ (Zﬁ is the center R(G,ﬁ)) is repre-
sented as the sum of certain of the minimum idempotents ’éj , then it is
hence easy to conclude that e € R(G,K') if and only if e is a & -idem
potent, i.e., maintains the effect of all transformations ® &€ & (the
element u € K'(e¢) in this and only this case belongs to the fundamental
field K' when V(u) = u for all automorphisms V € F ),

Therefore, the minimum idempotents of the center R(G,K') coincide
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with the minimum & -idempotents of the center R(G,ﬁ) which means they sre
given by the formulas:

I

(20.1) el = 811 + ... +8. =

51HP

~ _1
% (g )e
1 iry g €G i
where the @& - character ‘Xi(g) equals:

(201.1) Ry(g) = Ryp(e) + oo + %y (@) (1=1,...,0)
(ni is the degree of the abso%utely irreéucible representation correspond-
ing to any of the characters “&j (3 =1,...,75) 5 see (11°1.1) ).

Each minimm idempotent e! (i =1,...,q) of the center R(G,K?)
generates a minimum two-sided ideal I! in R(G,K') which is isomorphic to
the complete matrix ring on the set Di with index ms . The represent-
ation I;' of the growp G (i =1,...,q) , which is irreducible on K' ,
corresponds to this ideal.

Since q , by virtue of THEOREM 1.1 , is the number of K' -divisions
of G, then the following theorem holds [8]:

THEOREM 5.1. The number of irreducible representations of a finite
group G on an arbitrary field K' whose characteristic does not divide
the order of G equals the number of XK' -divisions of the group G .

There results from (20.1) and (20!'.1) that the representation I;‘
decomposes into a sum of absolutely irreducible representations correspond-
ing to the characters &&1""’£ﬁr (i =1,...,9) . Hence, according to
(4'.1), each of these representations enters into the decomposition of Il'
with the miltiplicity m, (1 =1,...,9) . Hence, the irreducible X' -char-
acters Xi(g) of the representations I}' (1 =1,...,9) are expressed by
the formula:

(21.1) Xi(g) = my(typ(a) + .. +a‘airi<g> ) =m¥y(e)  (1=1,...,0)
from which

~ Hg)
(22.1) %i(g) = xi £ (1= 1,“-,‘])

m
(mi dividef n, , which means it is notidivided by the characteristic of
the field X ).

Substituting the & -character ii(g) (formula (22.1)) into relations
(II'), (III'), (IV') , we obtain the following fundamental relations between

the characters of the irreducible representations of a group on the field K' :

: q
(I1'Y) Zilj‘XQ(bj)xﬁ(bj) = nkrkmﬁ til'xgg)zt%ﬁ(bt)
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(the second fundamental relation between the irreducible K' -characters);
q 0 if 1 £k
h
(III'Y) ’X (b, )7( (b — if i=k
j-l rjm§ J J k Zy
(the third fundamental relation between the irreducible K' -characters);
1 0 if 143
(Iv) 2 %j(e)(e ) = »
gesG hrimi if i=3j3

(the fourth fundamental relation between the irreducible X' -characters).
The first fundamental relation between irreducible K' ~characters is
obtained by starting from the expansion formula of the direct product of I"i

and I'J!' into irreducible representations: I'_;L' x IS' = 2 a:(l?)l'" from
k=1
which

9 ()
(1) W@ = 2 o)

(the first fundamental relation between irreducible XK' -characters).

Let us note that relations (II') and (III'), just exactly as the corres-
ponding formulas for the & -characters, are valid under the assumptim that
the orders of the K' -divisions Zi and the numbers r, (1 =1,...,9) are
not divided by the characteristic of the field X' .

Substituting the @ -character %,(g) given by (22.1) into (I'), we
arrive at the equality:

(k)
(100 | OO z —L—ixk< )
Comparing (I'') and (I'''), we obtain(tl;e relation
- k
(k) My
(23.1) 11_‘] -7;3.7“3__

The following proposition results from (23.1):

Let K' be a field of characteristics zero; I;' a representation of
the group G with the character 1{ » Which is irreducible on K!' j my the
Schur index of the absolutely irreducible component of the representation
Ij'_' relative to K' . If the direct product of the representations l'i"

ar(ld) I:j" contains ];;' for aglg) times, then the ratio
k

-—-‘i—mk is an integer.

J



B-162

2l

Let us consider other facts of the theory of representations on an
arbitrary field, which can be obtained on the basis of the properties of
& -characters.

A direct corollary of THEOREM 3.1 and formula (21.1) is the theorem:

The number of irreducible K' -characters of a finite group G sustain-
ing the S -transformation g—->gv (group automorphism) equals the number
of XK' -divisions of the group sustaining this transformation (this auto-
morphism) .

This result also admits such a formulation:

THEOREM 6.1. The nunber of irreducible representations of a finite
group G on a field K', whose characteristic does not divide the order of
G , where the representations remain mutually equivalent for a given auto-
morphism e->e’ of a field of characters (for a given group automorphism),
equals the number of XK' ~divisions of a group which sustain the transform-
ation g—»g’ (this automorphism).

For the case of representations on an algebraically closed field,
another solution of the question of the number of irreducible representations
which transform into equivalent representations for a given group automorph-
ism is given in [11] .

Using THEOREM .1, the question of the isomorphism of centers of group
algebras of certain classes of groups can be solved.,

Let us consider the decomposition of the center ZK' of the algebra
R(G,K') into a direct sum of subfields of the field K'(e) , corresponding
to the two-sided decomposition (1.1) of the algebra R(G,K!') :

(24.1) Zgo = 24 4 L4 z&
(Z} 1s the center of the ideal I; i=14,...,9) .

The minimum idempotents e; € I} N Zy, are units of the field 2}
(1 =1,...,9).

It is easy to see that the degree of the field Zj'. on KXK' equals r
the number of minimum idempotents of the center R(G,ﬁ) , into the sum of
which the e} is decomposed [see (20.1)].

Actually, in the extension of the field X' to the field K , the two-
sided ideal If & R(G,K') transforms into the two-sided ideal lii = R(G,ﬁ)e{
of the algebra R(G,K) and the center Z of the ideal I} into the center

i

A
Z; of the ideal I, (1 =1,...,q). The dimensionality of 2! on X'

i 2
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fquals the dimensionality of Ei on % . But the dimensionality of %i on
K equals r, (i =1,...,9) . This means that the degree of Z! on X!
equals Ty o-
Let us note that Ty is the number of absolutely irreducible characters
in a K' -division of characters Xi , the corresponding K' -division of the

idempotents of the center iéil""’gir } .
i

Now, let us assume that the Galois group of the field X'(e) on X' is
cyclic. Then, by virtue of THEOREM 4.1, a K' -division Ti of the group G
corresponds to each K' -division of the characters Xi so that Ti contains
as many classes of conjugate elements as there are classes in Xi (i =1,...,q).

Therefore, the numbers rl,...,rq coincide with the numbers of classes
in the corresponding K' -divisions of the group G .

Hence, there at once results

THEOREM 7.1. Let G and H be finite groups; m the least common
miltiple of the orders of elements of G and H ; K' an arbitrary field
whose characteristic does not divide m § e a primitive root of degree m
of unity. If the Galois group of the field X(e') on X' is cyclic, then
the centers of the group algebras R(G,K') and R(H,K!) are isomorphic if
and only if there exists a mutual one-to-one correspondence between the K
divisions of the groups G and H for which the appropriate K!' -divisions
of these groups contain the identical number of classes of conjugate elements.

Actually, the fields into a sum of which the centers of the algebras
R(G,K!) and R(H,K') are decomposed are subfields of the field K'(e) and
the intermediate subfield of a cyclic extension of the field K' is deter-
mined uniquely by its degree on XK' .

COROLLARY: If one of the following conditions is satisfied:

a) The order of each of the groups G and H equals pa or 2pa
(p an odd prime),

b) K!' is a field of characteristics p ) O ,

c) K' is a field of real numbers,
then a necessary and sufficient condition of isomorphism of the centers of
the group algebras R(G,K') and R(H,K') is the existence of a mutually
one-to-one correspondence between the XK' -divisions of & and H for which

the corresponding K' -divisions of these groups contain the same number of
classes.
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Actually, in cases a), b), c) , the Galois group of the field K'(e) on X!
is cyclic (it is assumed, as before, that the characteristic of the field K
does not divide the orders of the groups under consideration).

If the orders of the groups G and H equal oM , then the isomorphism
of the centers of the group algebras R(G,K') and R(H,K') does not result
from the coincidence of the numbers of classes in the corresponding K!
divisions of these groups.*

For example, let us consider the centers of group algebras on the
field R of rational numbers of two groups of 16-th order:

G: =1, b2a1, vlap=al
Hi Ser, d?-1, ala-=d
Let Z; be the center of R(G,R), Z, the center of R(H,R) . It is easy
to obtain the following decompositions for Z1 and 22 :
L inenenanan sy
2 T V-2)

This means the algebras Z1 and 22 are not isomorphic. Moreover, the

corresponding divisions of these groups contain the same number of elements
(R -divisions of the arbitrary finite group coincide with divisions of the
group) .

The COROLLARY to THEOREM 7.1 remains valid for Abelian groups of
order 2™ ., This results from the following theorem:

THEOREM 8.1. If G d4s a finite Abelian group of order h and K'!
is a field whose characteristic does not divide h , then in the decompos-
ition of R(G,K') into a direct sum of minimum ideals

R(G,K') = n ...+ Ié
each ideal I! 1is isomorphic to the field K'(gi) , where ¥, 1is a root
of degree a, (h = 0(mod ai) ) of unity, and the degree of the fields I
(1 =1,...,9) on K' coincide with the orders of the corresponding K!

divisions of G .

% Remark during proof-reading. If G 1S & group all of whose repre-
sentations are monomials (M -group), then the degrees of the absolutely
irreducible representations of the group coincide with the indices of some
of its subgroups. For M -groups, the necessary and sufficient conditions
of isomorphism of completely reducible group algebras are included in the
coincidence of the indices of the corresponding subgroups. Conditions of
the 1lsomorphism of centers of group algebras of an M -group can be obtained
by this means and for certain classes of M -groups (for example, for p
groups and groups with order without squares) necessary and sufficient cond-
itions of isomorphism of group algebras on an arbitrary field whose character-
istic does not divide the orders of the groups considered can be proved. The
author published these results partially in [19].
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PROOF. Let us denote the idempotent generating the ideal Ié by e%

(i =1,...,9). Identifying elements of the form Ke! (x € K*) with the
elements A , it can be stated that each field Ii is obtained by adjoining
a finite number of roots of unity of the form ge:,'L (g € G) , whose degrees
divide h , to the field XK' . This means I} = K‘Gfi) , where X, 1is a
i(h£de%))(i=L””®.

Let G be decomposed into a direct product of cyclic groups of orders

certain root of unity of order a

hl""’hr with the generating elements al”";ér , respectively. Then the
complete system of minimum idempotents of R(G,K) is given by the formulas:
h,-1 h_-1
1 r -iltl irtr tl tr

1
. = Z .. Z P A}
115000l h 1,20 "5 0 & r il r

(ij = 0,...,hj -133§=1,...,r)
(ej is a primitive root of degree hj of 1;3j=1,...,r) and the elements

(24h'.1) e

of G are expressed as follows in terms of the minimum idempotents of R(G,ﬁ):
i i 1. T ilt it
1 T 1 TTr A
(214"01) al c-oar = z e e 2 al eeob a _t

t,=0 t =0 r LCEEETELN
1 r

(ij = o’ooo,ho-l ; j = 1,-0.,1’)
i J
If the element a ~...a is substituted in conformance with the idempotent

e, . , then it is easy to see that the number of minimum idempotents

ll,oeo,lr

of R(G,?() which are XK' -conjugate to 8 equals the number of

il,. o1
i1 T ip
elements of G which are K' -conjugate to a " .ea,

Therefore, the orders of K!' -divisions of G coincide with the
degrees of the fields I{ on K.

The THEOREM is proved.

COROLLARY. The group algebras R(G,K') and R(H,K') of the primary
Abelian, finite groups G and H are isomorphic if and only if G and H
contain the same number of K' -divisions and the orders of the corresponding
K!' -divisions of these groups coincide.

PROOF. The necessary and sufficient condition of the isomorphism of two

fields K'(el) and K'(sz) , where &, and e, are, respectively, roots of

t 2

degrees p and pm of unity (p is an arbitrary prime), is the coincidence
of their degrees on K' since one of them is always isomorphic to the sub-

field of the other.
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The necessary condition of the isomorphism of centers of groun algebras
of arbitrary groups on an arbitrary field gives the following:

THEOREM 9.1. Let G and H be finite groups; m *%the least common
miltiple of the orders of elements of G and H ; X' an arbitrary field
with characteristic which does not divide m ; & a primitive root of
degree m of unity. Let K' =P CPC...CP = K'(E) be an increasing
chain of fields, where Pi+1 is the cyclic extension of the field Pi
(i = 0,...,r-1). If the centers of the group algebras R(G,K?) and R(i,,K!)
are isomorphic, then between the Pi ~divisions of the groups G and H
there exists a mutually one-to-one correspondence for which the corresponding
Pi ~divisions of these groups contain the same number of Pi+1 ~divisions
(i =0,...,r-1).

PROOF. Let Fi be a Galois group of the field K'(&) on P, ; T,

- i i+1
a Galois group of the field K'(&) on P, Then li/Fi+1 is a Galois
group of the field Pi+

1
theorem, this group is cycliec.

+1
on Pi . By virtue of the conditions of the

Let Tl""’Tm be Pi+1 -divisions of G ; S ERRREA minimim idem-

potents of the center of the group algebra R(G,Pi+1) The groups §i and

§i+1 of the S -mapping g-—)gv (g€ G) correspond to the groups Fi

to which they are isomorphic, whers §i/§i+.l is a cyclic group since
%, F,
8,0 = /Py
Evidently, the mappings ¢ € §i+l retain each idempotent ej and each

Pi+1 ~division Tj (j =1,...,m) 1in place. Hence, there results that the

transformations @ € éﬁ from one adjacent class §i to §i+1
affect the idempotents 7 and the P, . -divisions Tj (3 =1,...,m) .
This means that the factor-group §3/§i+1
14 -transformations of the group G (see DEFINITION 5.1).

On the basis of THEOREM L.l, the set §T seeesT b of P, -divisions
of G and the set {el,...,enlg of minimum idempotents of the center
R(G,Pi+1) decompose under the effect of the group §3/§ of S5-3%,

i+l i+l
transformations into the same number of transitivity regions so that the

of the same

can be considered as a cyclic
group of S-T

corresponding transitivity regions of these sets contain the same number of

elements (Pi+1 -divisions and idempotents e, , respectively):

fr,...,0 1= MlU...UMki ;M {Til,...,'risl}

fersooen} - Elu"’UEki s By = Eeil"""eisl}

L]

and Fi+1
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The number of Pi -divisions of the zroun 3 equals k and coineilcs
ST Tl I
! B a LACn R
I i

- .
division Tj (3 = 1""’ki) is a set-theoretic sum of elements of the

with the nurber of minimum idemmotents of the center

sroun G belonging to the Pi+1 -Aivisions le""‘Tjs, of the set P%

« =

(3 =1, ..,k)). The minimm idemotents 61,.‘.,Ek. ofYthe center ®(3,7.)
1

are ziven by the formulas:

8, =c,q + . . +e, - oy
J 1 AR (3 =2,...,%)

If the centers of the group algebras R(3,K') and R(U,K') are isc-
mornhic, then the centers of the groun algebras R(G,Pj) and R{H,Pj)
(j =0,...,r) are also isomorphic.

This means that the group algebra R(H,Pi) contains exactly ki
minimum idemmotents of the center gi,...;g" and these lattesr are decom-

N - . 1 v I3 a4
posed in R(A,Pi+l) into the same number of minimum idermotents of the
-

“3
=ell + .., +e! i =1 k
il (J s )

S.
I3

Reasoning analogously for H as was done for & . we ohtain that ths

center R(H,Pi+1) as are the corresponding idempotents El,

nurbers sl,...,ski coincide with the numbers of Pi+1 ~-divisions in the
P, -divisions of H (i =0,...,r-1) .
ihe THEOREM is nroved.
§ 2. INDUCED REPRESENTAITONS

1. Relations between & -Characters of Groups and 3Subgroups. In this
paragranh, we assume that the algebraically clsoed field i has character=~
istic zero.

Iet G be a groun of order h ; H a subgroup of order h' of the
group G ;3 2 such a group of 3 -mappings of the grouwp G that each 5
mapoing ¢ € ® transforms H into itself and is a 3 -mapping of this sub-
group. Then & induces the group @' of 5 ~mappings of the group H .

Each representation I" of the group G on the field X induces a
representation of the subgroup H which we will denote by I" [(H) .

Conversely, the representation I'' of the subgroup H induces the
renresentation I1IVNG) of the group G .

If %X(a) is a character of the representation I®' of the subgroup H

A
then the character )L(g) of the induced representation of the group G is
given by the formula:
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(1.2) () = %—; 2 % tge) (K(ctge) =0 if cYge€H)
ceG
Formula (1.2) can also be written in the following form:
h
(11.2) X&) = 2 = A
aGCDﬂH ht. g

where C_  is the class of conjugateaelements of the group < containing
the element g 3 hg is the order of the class Cg

If ¢€ &, the following formula holds:

(2.2) Co(g) M H = ®(C_M H)

Actually, if x € CgﬂH , then ®(x)€ H (H sustains the transformation
from the group @ according to the conditim) and %(x) € CLP(g) because ¢
is an S -mapping of the group G .

Conversely, if x& C¢(g)(\H , then there exists an element y € C
such that ®(y) = x but since x € H, then also y&€ H, i.e., y&C NH.

LEMMA 1.2. If I 1is a % -representation of G, then I'J(H) is a
&' -representation of H . If I'' is a &' -representation of H , then
T"*NG) is a @ -representation of G (see DEFINITION L.1).

PROOF. The first statement of the lemma is obvious. Let %(a) be a
character of the &' -representation I'' of the group H . By virtue of
(1'.2), the character % (g) of the representation T"'NG) is expressed
by the formula:

h
%'(g) = aecgan FTE X(2)

If ®&€ & then because of (2.2)

*(o(g)) = RN I (EV L e ¥(a)
% (¥le aecq,(g)nH g : aecp(c?nH) hts g% )
h h 3%
= 2 g X(%(a)) = I g Xa) = (g)
a€C NH ‘gx : a€C_ NH gxa X

This means I"'NG) is a & -representation of G.

The LEMMA is proved.

Let T‘.I""’I;; be irreducible & -representations of the group G ;
Xi the character of the representation I} (i =1,...,t); Ii*,...,Ia'
the &' -irreducible representations of the subgrouwp H ; ’,(i the character
of the representation I (i=1,...,q9) ; Ty (r{) the number of characters

of a & -division of characters of the group G (of a &' -division of the
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characters of the group H , respectively) corresponding to the € -character
X, )

Let us consider the representation I;J,(H) of the suhgroup H induced
by the representation I;_ of the group G .

By virtue of LEMMA 1.2, IJ'_,L(H) is a &' -representation of the group
H ., This means Ii,L(H) decomposes into a sum of #' -irreducible renresent-
ations (see LEMMA ).1):
(3.2) GUE) =x Ot o #n g T
vy 1y e non-negative integers).

In conformance with (3.2), we obtain the formula
(L.2) %y(a™h) = j%luijyi(a'l) (a € ®)
Let us multiply both sides of (4.2) by X:(a) and let us sum over all
elements a € H taking (IV'') (8 1) dinto account:

-1 3 -1
(5.2) z 76 (a)y;(a™) = 2 lj% H(a™ %L (a)
acH a€H j=1

- [ ] -1 iht
- Jflmij<azﬁxs(a)xj(a )> =575

Miltiplying the right and left sides of (5.2) by
over i , we obtain the relation

t
(6.2) R Y z Ay (e)hy(a™d) = 2 l-xis - (g)
i

(g € G) and summing

Let '.I‘g be a @ -division of the group G containing the element g ,
!l the order of Tg . By virtue of (III'), the following equality follows
from (6.2): ’

t !
(7.2) Lo x'<a> - 2 2, 4,(e)
: ‘ aéT (\H i=1 "1

Let the @ -division T cons:Lst of the classes C G s+03Cy
g * (g) ¢ _1(g)
(‘PiE §;1i=1,...,k-1). Then Z,g = khg , where hg is the order of the

class C_ . Since the character %'(a) is a function of the &' -division
of the grouv H (see THEOREM 2.1), then because of (2.2)

(8.2) 1 2 Doy -k 3 (a) = % (a)
h—raéTg/\Hzg%saL BT €C (\H ¢ : aGCﬂH gx )
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By virtue of (8.2), the equality (7.2) can be written as:
1 Boyia) - 3a, 8
(-2 Bt aec;ui hg Ko = 2 Ve MO
The left side of (9.2) is a character of the # -representation I‘é’]‘(G)
of the induced &' -representation I1' of the group H [see (11.2)].

Hence, from (9.2) there results the statement generalizing the
Frobenius duality theorem [2]:

THEOREM 1.2. Let G be a group; H a subgropof G; @ a
group of S -mappings of G which induces a group of S -mappings of
H; I'and I'' are & -irreducible representations of the growp G
and the subgroup H , respectively. If the representation I'J,(H) con-
tains I'' a times, then the & -representation T' '(G) contains I
a -:‘—' times, where r (r') is the number of absolutely irreducible
representations into the sum of which T (' correspondingly) is
decomposed.

The following holds for induced representations over an arbitrary
field

THEOREM 2.2. Let I’ and I'' be irreducible representations of
the group G and its subgroup H , respectively, over an arbitrary field
K' of characteristic zero. Let the minimum, two-sided ideal I (I') ,
isomorphic to the complete matrix ring on a field D '(D') correspond to
the representation I" (I"') in R(G,K') (R(H,K')) .

If the representation I'|(H) contains the representation I'' «a
times, then the representation I"?(G) contains the representation T

1

a %— times, where d (d') is the dimensionality of the field D (D')
over KXK' .

The proof of the theorem is based on formula (IV''!') and (III'') of
8 1 by the same means as the proof of THEOREM 1.2 is based on (Tvre)
and (III').

Relations (IV''') and (III''), respectively, are obtained from (IV'')
and (III') by replacing ry by rimi = d; (ri is the dimensionality of
the center of the field Di over X' ; mi is the dimensionality of Di
over its center). Consequently, the ratio g-'- al.ppears instead of the
ratio I in the formulation of THEOREM 2.2. THEOREM 2.2, is also a

generalization of the Frobenius duality theorem.

B-162
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2. P -adic Ring of K' -Characters. The Brauer [5] theorem plays
an important part in the theory of induced representations of a group:

Each character of a finite group G is an integer linear combin-
ation of characters induced by characters of elementary subgroups of the
group G . |

The direct product of a p -group and a cyclic group whose order
is not divided by p is called an seléementary group.

The Brauer theorem is obtained by Roguette [7] as a consequence of
a number of structural theorems relative to a p -adic ring of absolutely
irreducible characters of a finite group.

A P -adic ring of characters of irreducible representations of a
group G over an arbitrary field X' of zero characteristic is invest-
igated in this paragraph by the Roquette method. A generalization of
the Brauer theorem for representations over the field K' is obtained
as a consequence. Other results of [61, [:13], related to the Brauer
theorem, are also generalized.

As before, let us use the notations (&) .

DEFINITION 1.2. Let H be a normal divisor of the group G . The
group of inner automorphisms of the group G induces a group & of S
-mappings of H . Let us agree to call & -conjugate elements of H,

@ -conjugate characters of H and % -conjugate minimum idempotents of
the center R(H,'Ik) G -conjugates. _

Let us call & -divisions of the group H , characters of H and
minimum idempotents of the center R(H,?() G -divisions.

Evidently, G -divisions of the group H are the class of conjugate
elements of the group G contained in H .

LEMMA 2.2. Let us assume that H is a subgroup of index m of
the group @ . If the idempotent e € R(H,K') generates a left ideal
I of dimensionality r over K' in R(H,K') , then the dimensionality
of the left ideal T = R(G,K').e over K' equals mr .

PROOF. Let aje, ... ,a.e (a; H;i=1,...,r) be abasis of I
over K' ; bl’ .. "bm a system of representations of left neighboring
classes of the group G on H . Then it is easy to verify that the
elements bjaie (=1,...,r 33 =1,...,m) form a basis T over K'.

THEOREM 3.2, Let H be a normal divisor of index m of the

33
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group G ; e the idempotent of the center R(H,K') generating the
minimum two-sided ideal I , isomorphic to the complete matrix ring of
order r over the field D, in R(H,K') .

If the number of minimum idempotents of the center R(H,K') , which
are G -conjugate to e , equals m, then the sum of these idempotents
? = 8] + ... * e (el = e) 1s a minimum idempotent of the center
R(G,K') and the ideal T = R(G,K!')d is isomorphic to the complete
matrix ring of order mr over the same field D .

PROOF. Let bl, ...,bm (b1 = 1) be a system of representations
of neighboring classes of the grow G on Hj I, = R(H,K')-ei

(1 =1,...,m) . Changing, perhaps, the numbering of the elements b

i b
it can be considered, by virtue of the conditions of the theorem, that
-1
(10.2) bi l.Lbi = Ii (1 =1,...,m
The ideals ?l'._L,...,Im are orthogonal in pairs:
(11.2) LI;=0, if i #3  (see (1.1))

Let u€ I‘.L be a minimum idempotent of R(H,K!)

| U=R(HK)u; T=R(GKu
I au,...,au (aiEH s 1=1,...,a; a =1) is the basis of the
minimum ideal U over K' , then the eleilents bjaiu (3 =1,...,m
i=1,...,9) form a basis of the ideal U over K' (see LEMMA 2.2).
Each element xfﬁ is represented uniquely as:

(12.2) x=12‘.jxijbjaiu (xijéK' ;i=1,...,95 5 =1,...,m)

Let ?)l be 4 ring of operator endomorphisms of an additive group of the
ideal T (the elements of R(G,K') are considered as left ideals).

The arbitrary endomorphism 6e€D is given by the formula

(13.2) _ ~5c(x) = XC = Xuc (x, cé'ﬁ )

(u is the right unit ideal U ) and formula (13.2) yields the operator
endomorphism 6’06 D for any element c€T . The endomorphisms 5,')71 €D
are equal if and only if 8(u) = #{(u) .

If the endomorphisms 'é;u (r €K') are identified with the corres-
ponding elements % of the field K' , then it can be stated, by virtue
of (12.2) and (13.2), that each endomorphism 8eD is represented as:
(13'.2) IS 1ijé“ij Gy €K' 54 =1,..,953 =1,...,m)
where s
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(14.2) ij(x) = xbjalu = xubJai (x€ T s i=1,...,95 § =1,...,m)
We have ei;j(X) = xubjaiu = xb, (b7lub Ja,u =0 for j > 1 because
-1

bj ubjeI by virtue of (10.2) and (bj bj)(aiu) =0 (aiué]'_l) as a
consequence of (11.2).

Therefore, by virtue of (13.2) and (13'.2), we obtain for an arbitrary
endomorphism Be 5
(15.2) B(x) = Jt:(lla.l + ... +1qaq)u (x€ id 3k 4€ K' 31=1,...,9)

Since u is a minimum idempotent of R(H,K') , then the ring D' of
operator endomorphisms of the ideal U is a field. D' is inversely iso-
morphic to the field D because uéH .

The operator endomorphism © € D' is expressed by the formula
(15'.2) o(x) = x(xla1 #..4% 8 Ju  (xeU 5 R €K 5 i = 1,...,9)

The correspondence ©->6 (% is given by (15.2) and 6 by (15'.2))
is an isomorphism of the mapping of D on D' .

Actually, US‘-_TI’ and 6“ is the continuation of the mapping © from
U onto 'ff , where ] is defined uniquely by the endomorphism © since
8(u) = ©(u) . This means the ring D is a field from which there results
that u is a minimum idempotent of R(G,K') . Since D2 D' and D' is
inversely isomorphic to D then P 1s inversely isomorphic to D .

Let the dimensionality of the field D over KXK' equal s . Since
Il is the complete matrix ring of order r over D , then the dimensimn-
ality of Il over K' is rZs , the dimensionality of the ideal R(H K').%
is mrzs by virtue of (10.2) and the dimensionality of the ideal I over
K' is m2r2s as a consequence of LEMMA 2.2,

U is a minimum left ideal of a two-sided minimm idgal L.LC' R(H,K")
This means that the dimensionality of U over XK' is E—;s- = rs and the
dimensionality of T over XK' is rsm on the basis of LEMMA 2.2,

Let I'<T be a minimun two-sided ideal of R(G,K') containing a
minimm left ideal U . Then I' is the complete matrix ring of order
t over a field inversely isomorphic to the field '15’ of operator endo-
morphisms of the ideal i , i.e., over the field D ., Therefore, the
dimensionality of I' over K' 1is st2 and the dimensionality of T
over K' is _s% = st ., Hence, rsm = st fromwhich t =rm.

Thus the dimensionality of I' over K' is s(rm)2 and since the

dimensionality of T over XK' is sr2m2 also, then I' =1.
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We have shown that the ideal I 1is a complete matrix ring of order
rm on a field D .

The THEOREM is proved.

Let G be a finite group; n the least common multiple of the
orders of the elements of G § K' an arbitrary field of characteristic
zero; & a primitive n-th root of unity.

DEFINITION 2.2. We shall call the set NK,(a) of all elements of

g€ G , such that g-lag = a*

a K' -normalizer of the element a & G,
where &-—»e is an automorphism of the Galois group of the field K'(e)
over K' .

Evidently, the K' -normalizer of an arbitrary element of the group
G is a subgroup of this group.

DEFINITION 3.2. We call the group G with the following properties
a K' -elementary group:

1) G is a semi-direct product: G = H-F , where the normal divisor
H = (a) is a cyclic group whose order is not divided by the prime p
and F is a p -group.

2) The K' -normalizer of the element a in G coincides with G .

ILEMMA 3.2, Let G be the semi-direct product of a cyclic group
H whose order is mutually prime to p and the p -group F (H is a
normal divisor of G ); H! = (b) is the primary component of the group
H; N the normalizer of the element b in G . Then N is also a
normalizer of any element of the subgroup H' different from unity.

PROOF. Let us assume that the order b is pg (pl is a prime;
PF P

Let us take an arbitrary element a€F satisfying the condition
a€NNF , and an element b° H' (s g O(mod p;) ). The LEMMA will
evidently be proved if it isestablished that a~lpsa P
1p% = b® If a lba = b* ,
b%a = b*® and, therefore, us = s (mod pg) . This means

Lot us assume the reverse. Let a

then a~l

d
Evidently d > 1 , since otherwlse

lba-b, i.e., a& N

a
P
(16.2) W= 1§nod 2] | where d = (p7,8)

a
a

P
Let a}-spi (0 {3 a) . By virtue of (16.2), u-1+p§j_k, from
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which
a-j a-j

upl = (1 + pik)pl =1 (mod pJ)

Therefore u belongs to the exponent p{ (t+ > 0) modulo p; .
If the order a equals p’ (v>0), then from the equality
1ba = b* there results the relation aP bap = b“'.p = b with the
result that
P 1 (mod p])
This means the exponent p; (t >0) , to which p belongs modulo pl s
divides p’ (v > O0) .

The contradiction obtained shows that a~ 1pSa # b°

COROLLARY. Each G -division of the group H' which differs from
unity contains (G:N) elements and an arbitrary G -division of the
characters of the group H' which does not contain the principal char-
acter X(g) =1 consists of (G:N) characters.

PROOF. A statement relative to the G -divisions of H' results
directly from LEMMA 3,2,

If a€N (a€F), then the inequality x(a'lga) ¥ 1(g) (geH)
is satisfied for any character %(g) = 1 of the group H' .

Actually, if a certain character A{g) ¥ 1 were to sustain the
“lga , then on the basis of THECREM 3.1, an element g H!
(g # 1) would be found such that a"lga = g and this contradicts the
LEMMA 3.2 . This means N is a subgroup which retains any character
X(g) #1 in place, from which it follows that the number of characters
G -conjugate to Y(g) is (G:N) .

LEMMA 4.2, Let G = H-F be a K'!' -elementary growp (H is a cyclic
group and F a p-group); H' =(b) is the primary component of order
h! = pg of the group H ;3§ N the normalizer of the element b in G .
The subgroup N can be represented as the direct product: N = H'xQ ,
where Q = G'-N' , H = H'xG' , N' = NO\F .

Let X, (g),...,X, ;(g) are constant K! -characters of the grouwp N
in adjacent classes with respect to Q , which are obtained by a natural
continuation of the irreducible X' -characters xo(a), xl(a),...,xm_l(a)
of the grouw H! (710(a) is the principal character).

Then the function

automorphism a
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"i'i(g) if g€N

(16'.2) ¥i(e) = _ (1 =1,...,m1)
0 if geN

are irreducible K' -characters of the group G .
PROOF. The subgroups N and Q are normal divisors of the group
G . Let ;(l(a) (the principal character), %2(8')”"’;%'(&) be absolutely
irreducible characters of the group H'!' ; h the order of G ; d = (G:N) .
By virtue of the corollary to LEMMA 3.2, the set X =i'7'(2,...,f’h.}

is decomposed into G -divisions each of which contains exactly d

characters:

A

X=3‘c1\),.,\)ﬁq; fcinﬁj =A  if 143
(16%1.2) 2 o

X, = ‘nﬂ,...,iid} (i =1,...,9)

The set X is also decomposed into K' -divisions of characters:
X= T1 cen TS

According to the definition of a K' -elementary group, the group %
of S -mappings a—»a” of the group H!' corresponding to the Galois
group of the field K'(e) over K' (see DEFINITION 8.1) contains the
group 2' of automorphisms @ (‘Px(a) = x tax ; xX€G; a€H ) of
the group H' as a subgroup. Here @' 1s a normal divisor of % since
4@ 1is an Abelian group.

Using LEMMA 6.1, we obtain that each K' division of characters T,

of the group H' consists of several G -divisions ij

.y

’ A ~ . S
(17.2) Ti ={\xil""’xiri} (i=1,...,8; 121 ry =q )
= "
The following sum corresponds to each G -division of the characters Xi :
A
(18.2) A (a) =:7‘£il(a) + ... +‘Xid(a) (a€H' 3 i=1....,q)

In conformance with (17.2), (18.2) and (21.1) the following formulas
hold for the characters Xl(a),.. .,‘,(m_l(a) of irreducible representations
of the group H' over K! :

(19.2) Xi(a) = xj'i(a) PR Xi;i(a) (i=1l,...,8 3 s =m - 1)
(see the formulation of LEMMA L.2).

The minimum idempotent e, (i=1,...,8) of the algebra R(H',K!')
corresponds to the K' -character Zi of the group H!' :

(191.2) ) =l'-,- ) X(a-l)a (1 =1,...,s)
i h acH! i
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The idempotent es generates a minimum ideal Vi in R(H',KY),
which is a field, the extension of the field K' . Evidently, e
(i =1,...,8) is an idempotent of the center R(G,K') . It is easy to
show that the elements

a _
Gi = % 3 ‘Xi(a°1)a e (% is the order of N ;
a €H! c€Q i=1,...,h")

are minimum idempotents of the center of the group algebra R(N,?{) (?{
is the algebraic closure of the field X' ).
| In view of (16'!'.2), the set E = €y ...,8yy 15 separated into
G ~divisions:
n A A
5 =ﬁ1\/...UEq ;B =8, 8 =1,50)
(the idempotent gij corresponds to the character 15j ).
5ince N is a normal divisor of index d in G , then on the basis
of THEOREM 3.2, we conclude that the idempotents

el - A -
(20.2) e;;_' eil + ..., +'éid =% b (iil(a 1) +,..+ xid(a 1»3. pARS

a eH! ceQ
=f oz &™) 2 e (1=1,...,0)
a € H! c&Q

(see (18.2)) are minimum idempotents of the center R(G3%) , to which
correspond the absolutely irreducible representations of the group G
of the same degree d .

Because of (17.2), (18.2) and (19.2), the set E'' of minimum idem~
potents of the center R(G,%) ¢ EV' = {ei',...,eé'z, decomposes into the
K' -divisions: E'' = BJ'U...UE!', EJY =-iei']'_,.g.,a{;i} (1 =1,...,s;

9

8 = m=1)., Combining idempotents from one K' -division Bl , we obtain

the minimum idempotents of the center R(G,K') according tc (20.1):

ir h

(21.2) el =oM bl =2 I (AU 4+ 1)t () Zo
i a €H! T3 c€Q

~
z 1i(a-1)a Zc= g z Xi(gnl)g = % Z X{(gml)g
a€&H! c€Q gelN geG

(i=1,...,8 3§ s = m1)

d
“h

Let I}' be an irreducible representation of the grour 3 over X!
corresponding to the idempotent e{ (1 =1,...,s) 3 i{ is a character

of the renresentation I;' .

Comparing formula (21.2) with (20,1) and (21.1), we conclude that
P
] w .
(211.2) '[:.I(g) = mix:{(g) (1 =1,...,s)

39
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o
where m, is the Schur index corresponding to the character X-}L(g) .
Let us be certain that m, =1 (1 = 1,...58). Let G =G'-F. Let
us put

d

1
(22.2) ea%— 2 c3 u

cG_Gl

Evidently @ is an idempotent of the algebra R(G,K') . Because of the
equality .8 =%e; , u; is an idempotent of R(G,K') . Since esel = e, ,

=e8 (i=1,...,m1) (h

1 i zv 1s the order of Gl)

then uie{ = uy and, therefore

w €I} = R(G,K)ef i=1,...,m=1)
The dimensionality of the ideal I} over the field K' equals r d°

(see LEMMA ) of ]:18]). Because r, 1is the dimensionality of the center of
the simple algebra I.,'L over the field K' , the dimensionality of the

minimum left ideal of the algebra R(G,K') contained in I{ is r:‘_dmi

and this means that the dimensionality of an arbitrary left ideal I§_Ij'_
is not less than the number r,dm On the basis of the same LEMMA, the

dimensionality of the left ideil iR(G,K)ui over K' equals rid . Hence,
r,d 2 rydm, , from which m =1 . Because of (21'.2), the LEMMA is proved.

COROLLARY, If G = H-F is a X' -elementary growp (H is a cyclic
group, F a p -group), then each irreducible X' -character of the group
H 1s induced by a certain irreducible K' ~character of the group G .

PROOF., Let us consider the decomposition of the group H into the
direct product of primary cyclic components

Ha= H1 X, ..X Hs

Each irreducible K' ~character X, of the group H induces an
irreducible K' -character X,(j) of this growp (3j = 1,...,8) on H
If A 4s the principal character of H , then ¥ 1s evidently induced
by the principal character of the growp G .

Let the characters X(l),...,x(t) satisfy the condition 'X(J)(a) 1
(aéHj 3 3=1,...,t ; t € s) and let the characters X,(tﬂ) (s) be
the principal characters,

Because of LEMMA .2, the character 1,(3) (3 =1,...,t) is induced
by an irreducible K' -character 'X'(j) of the group G , which is
expressed by a formula of the form of (16%.2).

Now it is easy to see that the character X is induced on H by a

K! -character 'X‘(g) = X'(l)(g) X,“(t)(g) of the group G . Since ¥

gy
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is an irreducible K' ~character, then "i(g) will also 2e an irreducible
K' -character of G .
The corollary to LEMMA 4.2 is used in [12].
The following notations will be required in the sequel:
(" G an arbitrary finite group
n the least common multiple of the orders of the elements G
€ a primitive n-th root of unity
K' an arbitrary field of characteristic zero
(D)~ xi"_,,x; irreducible K' -characters of the group G
c a ring of rational integers
II" a field of rational p ~adic numbers
P a simple ideal of the field 1'1;(5) =
\_ IT’ a ring of p -adic integers of the field P
If R2C is an arbitrary ring, then a set X, of all possible
linear combinations of irreducible K' -characters 7(3".,...,7(“{ with coeff-
iclents from R can be formed:
(2111.2) XR={G1'[{+...+arx;} (aié_R;i=1,...,r)

If the operations of addition and multinlication of elements from XR
are defined by considering them as functions prescribed on 3 , then XR
is transformed into a ring. This results from the first relation between
the irreducible X! -characters:

13(2) % (a) = z LR HEY Ve o)

The unit of the ring X, is the principle character ﬁi(g) g1,
Since the K' ~characters ',(:{(g) (i =1,...,r) are functions of the
K' -division of G , then the functions E(g)(é)(R are functicns of the
K' ~division of the group:
(221.2) ¥(a) = E(b) if a and b belong to one K! -division of G .
Let us introduce the notations:
(22'v".2) X, =X ; XIP=XP
Inasmuch as each character X" is an integer linear combinatim
of absolutely irreducible cha.racters, the ring can be cmsidered as
a subring of the ring X'P 1(?.,-_- ialil + L. 5% where a € Ip
(i=1,...,8); il,... i are characters of representations of G which
are irreducible over ¥ (K is the algebraic closure of K! ).

The ring X‘P has been investigated in detail by Roguette in [7]
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Bacause %i(g) is the sumﬂof n-th roots of unitv (1 =1,...,8) ,

E(g) €Iy for any function %¢Xp and an arbitrary elemsnt &G .
-

Consequently, XTg is a subring of the ring A of all functions
f{g) (g€G) such that f(g)€& Ip . Topology can be introduced in the
ring A according to the following law: f ~»f if £,(g)=>(g) 1in
the ring Iy for all g€&G . There holds [7 X

THIOREM 4.2. Any Ip -submodulus of the ring Xp is closed in A

The ring X'P is decomposed into the direct sum of undecomposable
idealss
(23.2) XP=B1+..a+Bq
The decomposition of the unit of the ring X'P into a sum of pairwise
orthogonal idempotents
(24.2) 1”’11*°°'*’Iq5 '71713"“0 if 1473
corresponds to the decomposition (23.2).

Bach of the idempmotent functions i(g) (i =1,...,a) takes on
only two values on G : O and 1 . Therefore, the idempotent \11
(1 =1,...,9) is uniquely defined by the set M, of all elements g€&G
for which W,(g) =1 (1 =1,...,9).

The ideal B, = Xg%, consists of all functions E(g)€ Xp which
satisfy the condition:

(25.2) Z(g) =0 if géiMi (1 =1,...,q9)

Because of (24.2)

(26.2) Mlu...UMq=G; Mif\Mj =N for i#]}]
DEFINITION 4.2. We shall designate the sets Ml""’Mq the

P ~divisions of the group G .

Since the character ‘,{i‘(g) (i =1,...,r) is a function of the
K! ~division of the group G [see THEOREM 2.1 and (21.1)], then any
P -division Mi (1 =1,...,9) consists of several KXK' -divisions of G .

THEOREM 5.2. Gvery undecomposable ideal B, contains a single
ideal V, (i=1,...,9) . This ideal consists of all functims &€ B
such that (g) =0 (mod ®) for any g € G .

PROOF. The THEOREM is proved exactly as is the corresponding propos-
ition of [7] (when Bi is an undecomposable ideal in ﬁ‘o) .

Let Z€ Bi . On the basis of the Euler theorem for ideals, for any
natural m
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(7™ %1 (mod p™) if E(g) #0 (mod p)
&e ) 0 (mod'pm) ir Z(g) = 0 (modp)
Therefore
o™ 1 if E(g) #0 (modp)
. 1i = =
(27.2) Lim &(g)) k (g) {o it () =0 (mod )

There results from THEOREM }.2 and (27.2) that Yl'(g> & Bi )

Now let us assume that Eé Vi . Then there exists at least one
element g € G for which &(g) #0 (mod P) and this means that the
function %'(g) is a non-zero idempotent in the ring Bi (i=1,...,9
because of (27.2). Since Bi is an undecomposable ideal, then evidently
n ==Tli . Thus

m -
(28.2) mﬁg E.Q(P )(g) = M;(g) (E, €V, 51=1,...,q

It follows from (28.2) that there exists an inverse element

my_ -
E' = 1lim ZF,(P? )-1 for any function {(# Vi (EEBi) . This means
m->o
that V., is an unique maximum ideal in the ring B, (i=1,...,9).

COROLLARY. The elements a, b & G belong to one p -division of Mi
if and only if for all F€ Xp
Z(a) = Z(b) (mod )
PROOF. If a€M, , b€ Mj (i #j) , then because of (25.2), ny(a) =1,
)zi(b) = 0 and, therefore
73(a) # 3(b)  (mod p)
Let us establish the necessity of the condition of the THEOREM. Let

a, bEM, , Ee Xp . Because of (23.2) the function is represented
uniquely in the form

(29.2) Z,‘=El+... +§q (‘515313 i=1,...,q)
As a consequence of (25.2), Zj(a) = &.(b) =0 if j #41i . This means
(30.2) F(a) = F.(a) 5 E(b) = &,(b)

The set of functions &€ B; satisfying the condition &(a) =0
evidently forms the ideal ICZ.B_,L . Since Vi is a unique maximum ideal in
B, by virtue of THEOREM 5.2 , then I = O (mod Vi). Therefore

£ - 5l €

Hence, we conclude that

(31.2) Z,’i(g) - ‘éi(a) 7;(g) = 0 (mod p)
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for any element g € G .
Putting g = b in (31.2), we obtain:
Z;(b) - Z,(a) %3(b) = 0 (mod )
from which, in view of (30.2), Z(a) = %(b) (mod Pp) (‘qi(b) =1) .

The THEOREM is proved.

The element g€ G is called p -regular if the order of g is
mitually prime to o .

Each element g € G is represented uniquely in the form of a product
of permutable factors: g = ag' , where a 1is a p -regular element and
the order of g' 1is a power br p . The element a is called a p -reg-
ular factor of g . If g is a p -regular element, then it coincides
with its p -regular factor.

Let us introduce the following relation between elements of the

sl

group o ¢

g~ve if p -regular factors of the elements g and g, are
K' -conjugates (see DEFINITION 8.1).

Evidently this relation is reflexive, symmetric and transitive and,
therefore, the set G decomposes into nonintersecting subsets of mutually
equivalent elements:

(32.2) G=NUV...UN ; Nian =\ if 145

Each subset Ni (i =1,...,k) consists of several X' -divisions
of G .

Actually, if the elements of the group G are K' -conjugate, then
their p -regular factors are also K' -conjugate.

It is easy to see that any subset Ni (i =1,...,k) contains one
and only one K' -division of the group G consisting of p -regular
elements.

This means that the number of subsets Ni equals the number of such
K! -divisions of the group G , into which only p -regular elements enter.

If a is a p -regular factor of the element g € G and Eé X‘F’ s
then the following formula holds:

(33.2) Z(g) = & (a) (mod p)
Actually, let g = ag' (ag' = g'a 5 the order of g' equals pt) .
Since = apt + ... +a X! (e;€Ip) (see the notations (D)), then it

is sufficient to prove formula (33'.2) for each character A (E=1,...,0).
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The representation I3 , to which the character X{ (1 =1,...,r)
corresponds, induces the representation of a cyclic subgroup (g) which
decomposes into the sum of one-dimensional abéolutely irreducible repre-
sentations. We will have for the character ¥ of a one-dimensional
representation of the grow (g) :

L(ag') = X(a)A(g®) = %(a) (mod P)
because the congruence &' =1 (modP) is satisfied for any root &' of
unity of degree pt

LEMMA 5.2. Each subset N, is contained in one and only one
P -division of M, [see (26.2) and (32.2)].

PROOF. Let g, g, €N, (L £4iex). Then the p -regular factors
a and 2 of the elements g and g > respectively, are K' -conjugate
and, because of (21°.2), &(a) =E(a1) for any function Z € Xp . By
virtue of (33.2), E(g) = g(a) (modgp) and E(gl) = &(al) (mod -p) .
Therefore

Z(g) = E(gy) (modp)

Applying the COROLLARY to THEOREM 5.2, we obtain that the elements
g and g, belong to one P-division M (1L€j<£q) .

LEMMA 6.2. If H=(a) is a cycllc group of order h and
h #0 (mod p) , then the P -divisions of the group H coincide with
its K' -divisions.

PROOF. The group X' of absolutely irreducible characters of H
is isomorphic to H .

Let us assume that % is the generating element of the group X' :

s S1p s Sy
11 1 ml
= () . Let T ={a y eevy @ z, cees Tm=ia ) vees @ m}

S 3 .
1 Sip.

all be K' -divisions of Hj t3y =a + ... +a ' is the sumof

elements of a X' -divisionof T; (i =1,...,m) in R(HK') . Then
s s

i1 iry
the functions 7,(g) =¥ "(g) + ... +X “(g) (g€H; 1=1,...,m
will be K' -characters of H corresponding to irreducible represent-
ations of H over the field K?

Actually, « (g") = .. ¥ (g) =+*™g) . This means that the
characters of that K! mdiv:Lsion of characters to which xr belongs are
represented in the form 7(, , Where Wy are integers such that the
mappings e&->¢ "1 are automorphisms of the field Ki'(e) over K!
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Let the minimum idempotents e,,...,e =~ of the group algebra R(H,K")
be expressed by the formulas:

(34.2) oy = Fhygty + o *xyt) (1 =1,...,m)

[see (11.1) and (20.1)]. Evidently, Eﬁi € Ip (i, = 1,...,m) .

Replacing the elements tj by the characters 13. (3 =1,...,m
in (34.2), we obtain m pairwise orthogonal idempotents %,,..., %, in
the ring Xp(H) :

My = %(lﬂxl LIRRPRLS S A (i =1,...,m)

Since each P -division of H consists of several K' -divisions
of H and the number of idempotents ‘Y[i equals the number of X' -div-
isions of H , then the P =-divisions of H coincide with the K' -div-
isions of this group.

The LEMMA is proved.

COROLLARY. If H is a cyclic group of order h # 0 (mod p) and
the elements a, b€¢H , then X(a) =X(b) (mod p) for any K' -character
X of the group H, when a and b belong to one K' -division of H
and there exists an irreducible X' -character X for which
A(a) #A(b) (mod P) if a and b are in different XK' -divisions of H .

Actually, if the congruence ¥(a) = ¥(b) (mod ]o) is satisfied for
all irreducible XK' =-characters ¥ of the group H , then the congruence
Z(a) = E(b) (mod ) also holds for any function {€ Xp . Taking into
account the CORCLLARY to THECREM 5.2) and LEMMA 6.2, we arrive at the
conclusion that a and b are contained in one KXK' -division of H .

LEMMA 7.2. Let G = H.-F be a K' -elementary group, where H = (a)
is a cyclic group; F a p -group. If T is a K' -division of the
group H containing a and N is a normalizer of the element a in
G, N'=FAN, then the set TN' is a P -division of G .

PROOF. The p -regular factors of elements of the set TN! are
evidently K' -conjugate to a . On the basis of IEMMA 5.2, it follows
from this fact that TN'C M, where M is a certain P -division of
the group G . This means
(35.2) E(a) 2 5(g) (mod P) if g€ TV!

Let the decomposition of H into a direct product of primary cyclic
components have the form

(36.2) H=H x..xH
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By virtue of (36.2), we obtain the decomposition of the element a :

(37.2) a=a ...a (Hi =(ay) 5 1= 1,...,k)
Let Ni be the normalizer of the element a, in G j N: = FNN, ;
(%x.“ Hy o x Hy ”.x%)w (1 =1,...,k)
Evidently, Ni = Hi x Q (i =1,...,k) . It is easy to see that
(38.2) N-Nf\ Nk

Let ‘}fgl) (the principal character) x(i
irreducible K' -characters of the group H (i =1, ..{',k) . For each
i (4 =1,...,k) there exists a character x( 1) (1¢ 3 ¢ qy ) such that

xgi)(aﬂ £0 (modp) . Actually, if x(l)<a )20 (maw) (3 =2,0000)

then

(39.2) zl "2 () =1 (moap)

since xéi)(ai) =1. On theJother hand

(10.2) j;; (e = 0

because jz X(l)(a ) = jgixéi)(ai) , where x(i) ., 1(1) are all the

irreducible characters of the growp H, (i =1,...,k) (see (Iv), 81) .
There results from (39.2) and (40.2) the contradictory congruence:
=0 (mod P) .

Let us select the character 1 1) (1< 3y € qi) of the grouwp H,

(1 =1,...,k) satisfying the condltion X(l)(ai) # 0 (mod P) . According

to LEMMA .2, a XK' -character Xgl) of the group H

(1) *
of the group G :
Iy

i is induced by the

K* -character x'
0 if gENi

(1)
(L1.2) 1 (g) =
%H ) ﬁlkbg if geN

i
(1 =1,...,k)
Let us consider the K' -character Y'(g) :
(h2.2) ORI OREHE

As a consequence of (37.2), (hl 2) and (h2u2)
+A'(a) = «Xgi)( .x(k)(a

L7

4 and g = b,c (biéHi;ceQi)
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1}

Because P is a prime ideal and 1§i)(ai) £0 (mdp) (4 =1,...,k) , we
obtain that
(Lh21,2) ' 1'(a) # 0 (mod )
From (42.2), (41.2) and (38.2) there follows the equality:
(L3.2) 2(g) =0 if g€ N
Comparing (L2'.2) and (L3.2), we arrive at the relation: .
(Lk.2) . 1t(g) £ X(a) (modp)  if gE&N

Now, let us take an element g & G satisfying the conditions: g€N ;
g‘éTN' . Then g is represented in the form:
(45.2) g = abn?  where alE€T , n'€Nt

Because of the COROLLARY to IEMMA 6.2, there results from (45.2) that
there exists an irreducible XK' -character X of the group H such that
(46.2) 2(a) #%(a®) (mod )
On the basis of the COROLLARY to LEMMA 4.2, the character ¥ is induced by
a certain irreducible K' -character :Z," of the group G . Hence

(L47.2) . XL (g) =7'(atn’) = i“(at) (mod )
Since '}('(at) ='){(at) , then by virtue of (L46.2) and (47.2)
(L8.2) ‘ ;("(g) f;(,‘(a) (mdp) if g€N and g€&TN

Because of the COROLLARY to THECREM 5.2, the relations (35.2), (LL.2)
and (48.2) prove that TN! is a ‘P -division of the grown G .

LEMMA 8.2. Let G Dbe an arbitrary finite group; H a subgroup of
order m of the group G ; X(G) and X(H) integer rings of K' -char=-
acters of the groups G and H , respectively (see (22'7.2)); R a ring
of all functions f(g) in the group G which satisfy the conditions:

1) f£(g) takes on values in the field K''2 K' and is a function
of a K' -division of the group G .

2) " £(g) induces the function £,(g) €X(H) 1in the subgrowp H .

If I 4s an ideal in the ring X(H) , then the set I' of functions

(L9.2) E*(g) -% (ZGE(c'lgc) (E(c™Lge) = 0 if clgc€H)
c

induced by the functions Z(g)€ I, forms an ideal in the ring R (4t
is evident that X(®)€ R ).

PROOF. Because of (19.2), & - %" = (E-7n)"€ T (5m€1). Iet
f(g)eR N(g)€ I and f,(g) be a function induced by f(g) in H
(£(g) = fH(g) for all g € H) . Then as a consequence of (19.2)




B-162

149

f(gn(e) =2 2 f(gh(crge) =& 3 £l gem(c 7 ge) = (£(e) ()™
cel; cE€G

where fH(g)‘fl(g)eI since M{(g)€ I .

If R dis a ring which is a grow of linear forms over C :

R = (u ,...,um) , then we will denote a ring of linear ccmbinationsﬂl
fhjug ¢+ ... #x u Y, where 3 € Tp , by means of Rp and the basis
elements u; (i =1,...,m) are miltiplied exactly as in the ring R
(see the notations (D)),

IEMMA 9,2, Iet R be a ring with the unit whose elements form a
group of linear forms over C with resrect to addition; let T be an
ideal in R, If TF’ = Rp for all primes » , then T =R .

PROOF, Let us consider R as a subring of R?o . The maximum number
of elements of the ring R;F; which are linearly independent over Ip equals
the rank of R over C and the maximum number elements in the ring T;p
which are linearly independent over Ip equals the rank of T over C.
Since T =R , then the rarks of the free Abelian groups R and T
coincide.

Hence, if Upy ooy is the basis of T over C , then the following
relation holds:

(50.2) 71 =au +..+qu (e;€C, ¥E€C, 1 =1,...,m)

mm
We conclude from the equality R* = T‘P that in R’F’
(51.2) 1=puy + ... +Bu (BiEI s i=1,...,m)
Comparing (50.2) and (51.2), we arrive at the relations:
a,
i .
(52.2) + =0, € Ip (i =1,...,m)
Formulas (52.2) are valid for all primes p (p= O (mod p)). A
rational number which is a ~adic integer for any prime p belongs to
the ring C . *
91 am
This means 1 =q Ut .. T €T and T =R .

The LEMMA is proved.

Let G be an arbitrary finite group; Bi an undecomposable ideal in
%p(G) 3 V, a maximum ideal in By 5 W; an idempotent generating the
block B, in %p(G) M, a p -division of the group G , corresponding
to B, 5 aj€ M; a p -regular element; ng-, H; the set of all elements
of G whose p -regular factors are K' -conjugate to a; ; NK'(ai) the

X' ~normalizer of the element a; in G Fi a Silow p -subgrour of
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the group NKy(ai) 3 Gf = (ai}F:v1 is a XK' -eglementary sugroup of the
group G 3 Ni the normalizer of a, in G N:FL = FimNi y Ti is
a K!' =division cf the cyclic group (ai} containing the element a;
(1 =1....,9).

By virtue of LEMMA 7.2, the set TiN'iv’ is a P -division of the group

G:E’L . Therefore, there exists the idempotent
! if g€T N!

(53.2) *yzi(g) Xl 5 q ; 1‘1 (g €3})
. if gtTiNi

in the ring )gp(c};)

DEFINITION 5.2. The ideal E; gersrated by the idempotent %) in
XP(G"} will be called an elementary block corresnonding tc the ideal B

(1 = 1,.. 9Q) )

THEOREM 6.2. The ideal B; consists of all functions & € Xp(G)
induced by the functions E;éEi (Ei is an elementary “lock ccrresnonding
to B;) (i=1,...,0)

PROOF. Let Z €E, . Then the induced function & €Xp(G) is
expressed, according to (49.2), by the formilas

.2) “(g) = =t 2 2(clge)
(sh.2) E*(g AT G&(c ge

where E(culgc) 0 if ¢~ gc€ G . By v1rtue of LEMMA 8.2, the set
E; of functions & (E £ E, 3 generates an ideal in Xz(G)

The block E, conalsts of all functions &€ X,(G*) satisfying
the condition: &(g) = 0, if g& T,N' . This means that E(g) =
if cwlgcé T,N! for all c€G , i.e., if the p -regular factors of
the elements g and a, are not XK' -conjugate &€ Ei)

Hence
{(sh+.2) g) =0 if éDJ

Since D.GM, , then because of (54°.2), Z'(g) = 0 when geM,
From this we conclude that E. CB because Bi consists of all func~
tions %€ Xp(G)  such that zs(g) =0 if g*éMi

Futting g = a, and =i in (5h.2). we obtain:

(55.2) (a ) = 2 milcige) bgi(ctge) =
vy (G AT Leg 4 i
when c”laicgr}g ). By virtue of (53.2), foermula (55.2) can be written as:

—r ——— ———— s

¥ The block R, depends on the selection of the n -regular
element a, in the g ~division M (i =1,...,q)
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)-}{L . l - 7 "—‘-‘.
(55:02) ZLL (ai) = m ’2. 71::_36 igC)
L CE€ G

where ) 1
a3 §"O if ¢ a,c cT N1

e < -1
- s v
1 if ¢ asc € TiNi

!
Because a;, 1is a p -regular element, < ‘aicééTiNg if and only if

-1 s ,
ca,c€T, i.e., when c€N(a;) .

On the basis of the last remark, we obtain from {(55¢,2):
{a.):]

(NKg\ai)ol)
(Gial)

(562) Wl_é(al’\ o=

Since G' contains the Silew p -subgroupn of the group Nk”(ai) R
then because of (556.2}
(57.2) 7 () # 0 (med p)

1 R
According to THEOREM 5.2, the corgruence %(g) = 0 (med p) (g is

an arbitrary element of the growp G ) is satisfied for the function

E(g) €V, .
We now conclude from {57.2) that 'Qiﬁézvi . This means
(58.2) ES = B,

(Because of THEOREM 5.2, Vo i;
The THEOREM is proved.
Taking into account {54'.2) and (57.2), we arrive at the relations:

(59.2) 7! g) =0 if &0, ; vzal'*(ai) £0 (mod )

\ The equality Dj = N& results from the existence of the function

7. "(g) satisfying the conditions (59.2) and from the inclusion D,

on the basis of the COROLLARY tc¢ THEOREM 5.2,

Hence, there holds

a single maximim ideal i the ring B, .)

THECREM 7.2. Each P -division of the group G consists of all
elements of G having XK' -~conjugate p -resular factors.

This means the number of undeccmposable ideals in the direct decompos-
ition of the ring KP equals the number of K*' ~divisions of G which
contain p -regular elements.

Comparing (23.2) and (58.2), we obtain the direct decomposition:
(60.2) Xay = Ef 4 oA Ez
where El’ ceey Eq is a system of elementary blocks corresponding to

the undecomposable direct components Bl"“"Bq of the ring Xg .
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The decomposition of (60.2) is valid for any prime p (p =0 (mod p)).
Let X be an integer ring of K! -characters of the group G
(see (22.2)); H,...,B all the K! w~elementary subgroups of the gro:p
G Xi the integer ring of the XK' -characters of the group Hi 3 Xi
the set of all functions of the ring X induced by functions from Xi
(£ =1,...,8) . Then the decomposition (not direct) hclds:
(61.2) XeX 4. +%

Facd

Actually, by virtue of LEMMA 8.2, the sum X = X;f + .. 4+ X": is an
ideal 4n X . On the basis of (60.2), Xp=Xp for all primes p .
Applying LEMMA 9.2, we obtain that X = X .

The following theorem, generalizing the Brauer theorem [5], results
from (61.2):

THEOREM 8.2. Each character of the group G corresponding to the
representation of the group G over the field K! of characteristic
zero is an integer linear combinatiom of X' -characters induced by K!
~characters of K' ~elementary subgroups of the group G .

DEFINITION 6.2, Let us call the elements of the integer ring of
K' ~characters X generalized K' -characters of the grouwp G .

THEOREM 9.2, The function f(g) , prescribed on the group G with
values in the field K'!'2K' , is a generalized K' -character of the
group G if and only if the following conditions are satisfied:

1) f(g) is a function of the K' ~-division of the group G .

2) f(g) induces a generalized XK' -character of the K' -elementary
subgroup of the group G 1in each subgroup.

PROCF. Let R be the ring of all functions f(g) with values in
the field X''DK' satisfying conditions 1) and 2) of the THECREM, It
is evident that XEX . On the basis of LEMMA 8,2, the submodulus
ROEX generated by K' -characters induced by K' ~characters of the
K! -characters of the X' -elementary subgroups of the group G is an
ideal in the ring R . By virtue of THEOREM 8.2, R, =X . This means
that Ro =X =R,

The THEOREM is proved.

THEOREM 9.2.generalizes the fundamental result of the work [6].

THECREM 10.2. The integer ring of K' -~characters of a finite
group, where X' is an arbitrary field of characteristic zero which is
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not decomposable in a direct sum of ideals.

PROOF. The integer ring X of K! ~characters of the group G can
be considered as a subring of the ring l)\( , Where 3\( — an integer ring
of characters of the group G corresponding to the irreducible represent-
ations of G over a field ?(--is the algebraic closure of the field K’.

Let )CK be a r:Lng of absolutely irreducible characters of the group

A
G over the field s . The elements X4 are all possible linear combin-

K
ations
A
1‘11 oo # as.xs
(aiﬁ_g 3 1= Xl, . .,XS are absolutely irreducible characters

of the group G ).
Let us assume that Cl" .,‘,,Cs is a class of conjugate elements of
the group G 3 hi the order of the class Ci I ERREPLA the system

of representatives of classes C o,Cs § h the order of G . Let us

1o
consider the elements eié 3(/‘ g

S
(62.2) =-}-1-:L 3 'L](a )1.] (i=1,...,s)
By virtue of (III) (§ 1) _
: 0 if gGCi
(63.2) ei(g) =
1 if g€&C,
This means that ©s.-..0  are idempotents of the algebra ?(ﬁ .
Because of (63.2), e, (g)e (g) =0 if 1 #3; ey + ... te =1

(the unit of the algebra Xﬁ 1s the princinal character ‘Xj_(g) F1).
. Sincehthe numbell" of idempotents ey equals the rfnk of the algebra
Xf( over K , then X§ if a semisimple algebra over X .

Each idempotent eGX’I{ is represented in the form of a sum of

certain of the idempotents ©5-00s8g ¢

(64.2) e=¢e, # ...4+408, (1£té&s)
1 1
1 %
On the basis of (64.2) and (62.2)
h, h, h, + ... +h
1y 1y 1 i
—h—xl(ail)+...+—h-j[’1(ait) L+ ... = n 7‘1 o
h, + + h.
l 1

Since hy # ... #h_ =h , then C (C is the ring of
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rational numbers) if and only if h, + ... +h, =h, + ... 4h_ =h,
11 i, 1 S

But in this case e. + ... -i-e:,L =e1+ +eS=1 .

£
Thus, the ring % contains only trivial idempotents. This means

the ring X& X is undecomposable into a direct sum of ideals.

The THEOREM is proved.

Exactly as the theorem inverse to the Brauer theorem is proved in
[13], let us prove a theorem inverse to THEOREM 8.2,

Let us say that the system of subgroups M = fHa; of the group G
has the property (B) if each K! -character of the group G is an
integer linear combination of K' -characters induced by KX® -characters
of the subgroup Ha .

Continuing the reasoning on which the procf of THEOREM 9.2 was based,
it is easy to show that the system of subgroups M = {Ha} has the property
(B) if and only if any function of the X! -division of the group £(g)
(£(g) €K'"2K* ) which induces a generalized XK' -character of the sub-
group Ha' on each subgroup, is a generalized XK' -character of the
group G .

Hence, there results that by replacing any subgroup Ha in the
system M = {Ha} satisfying the condition (B) with a subgroup H&_.?;Ha
or a subgroup conjugate to Ha and also by adding new subgroups to the
system M (discarding subgroups from the system so that the property
(B) would be retained), we again obtain a system having the property
(B)

Two systems of subgroups M and M! satisfying the condition (B)
and obtained from each other by the transformation mentioned, we shall
agree to call equivalent.

THEOREM 11.2. If the system of suogrowps M = {H { of the group
G has the property (B) , then there exists a subgroup H & M for
any K' ~elementary subgroup E'SG , which contains a subgroup conjugate
to E?

Hence, to the accuracy of equivalence, the system of K' -elementary
subgroups of G is a single set of subgroups having the property (B) .

PROOF. Let E' be a K' -elementary subgroup generated by a p
-regular element a and a p -subgroup P“’QNKY(a) (NKH(a) is the
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K' ~normalizer of the element a in G ;. ZIet us adjoin P! %o the
Silow p -subgroup PEENK“(a) and let us show that a subgreup H €M

is found which contains a subgroup cerjjugate tc the growr T = ia,P} .

Let Wi“ be an arbitrary irreducibie X' ~character of a certain
subgroup H; . According to (1%.2)
( 5 ¢ h | ( T h'ht ) r )
65.2 ¥ (a) = z o (g) = 3 (b)) = 2 b
) 13 BT, sec nn 1 2 t=1 PPy 5% po1 1t Y13
a

where h 1is the order of G 3 h' the order of Hi 3 Ca the class of
conjugate elements of the group G 1enerated by the element a ;

bl""’br a system of representatives of classes of conjugate elements
1)

decomposed° h% is the order of the class of conjugate elements C{ of

the group H (¢t =1,...,r)

C° of the group Hi into which the intersection Caf\H is

Since %— =n is the order of the normalizer 1i,(b,) of the element

t
a
7
b, in G and ET = n' 1is the order of ths normalizer i, (b,) in H,
t ht = i
= -1 “,l A C I\ \ < I
(Nﬁi(bt) NG(bt)f\Hi) , then Oyqp 18 the index of ]ﬁ;(bt, in DG(bt)
. aka
i3t can also be considered as the index of the K'Y -normalizer
Né%)(bt) of the element bt in Hi in the K! -normalizer er(bt)

of the same element in the grouwp G .

Actually, because the set of elements g&G catisfying the cond-
ition g_lbtg = b: (b is a fixed number) forms a contigucus class of

the group G by means of NG(bt) , the crder of T(n(bf) is ns , where
s 1is the number of elements of the cyclic group \b ) E* «conjugate

to b, and in exactly the same way the order of ﬁj)(b ) is n's .

t

This means (N (b)ﬂﬂw))-_r=%v=1ﬁ,

Since the system of subgroups M = iH } has, according to the cond-
ition the property (B) then Z ‘rlJ‘J;l:j = 1 (f are j_ntegers) from
which by virtue of (65. 2) there results that for certaln i, j, t
(66.2) @iy O (med p)

It folldws from (66.2) that (K%(b ) contains a 3ilow p ~subgroup
Q of the group NK“(bt) and this means that the K! -elementary subgroup
is

- P dEnto)er
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As a consequence of the inclusion ‘ot,aéca (bt - ¢ lac ; c€G)
we conclude that lpec is a Silow p =subgroup of the group NKf(bt).
This means that d“l(cmch)d = Q for a certain element de=NKv(bt) s
from which (cd)’lEcd = E?EiHi .

The THEOREM is proved.

I am grateful to IA. B, Lopatinskii and I. R. Shafarevich for a
number of valuable remarks.

Uzhgerod Oct. 17, 1956
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